Documentation Verification Report

Equivalence

šŸ“ Source: Mathlib/AlgebraicTopology/DoldKan/Equivalence.lean

Statistics

MetricCount
DefinitionsN, comparisonN, equivalence, Ī“
4
TheoremscomparisonN_hom_app_f, comparisonN_inv_app_f, equivalence_functor, equivalence_inverse
4
Total8

CategoryTheory.Abelian.DoldKan

Definitions

NameCategoryTheorems
N šŸ“–CompOp
3 mathmath: equivalence_functor, comparisonN_hom_app_f, comparisonN_inv_app_f
comparisonN šŸ“–CompOp
2 mathmath: comparisonN_hom_app_f, comparisonN_inv_app_f
equivalence šŸ“–CompOp
2 mathmath: equivalence_inverse, equivalence_functor
Ī“ šŸ“–CompOp
1 mathmath: equivalence_inverse

Theorems

NameKindAssumesProvesValidatesDepends On
comparisonN_hom_app_f šŸ“–mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
HomologicalComplex.instCategory
N
CategoryTheory.Idempotents.DoldKan.N
CategoryTheory.Idempotents.isIdempotentComplete_of_abelian
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.category
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
CategoryTheory.Abelian.hasFiniteColimits
comparisonN
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.Idempotents.toKaroubiEquivalence
CategoryTheory.Equivalence.functor
AlgebraicTopology.DoldKan.N₁
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.map
CategoryTheory.Idempotents.toKaroubi
AlgebraicTopology.NormalizedMooreComplex.obj
AlgebraicTopology.normalizedMooreComplex
CategoryTheory.Iso.inv
AlgebraicTopology.DoldKan.N₁_iso_normalizedMooreComplex_comp_toKaroubi
—CategoryTheory.Idempotents.isIdempotentComplete_of_abelian
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
comparisonN_inv_app_f šŸ“–mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
HomologicalComplex.instCategory
CategoryTheory.Idempotents.DoldKan.N
CategoryTheory.Idempotents.isIdempotentComplete_of_abelian
N
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.category
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
CategoryTheory.Abelian.hasFiniteColimits
comparisonN
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.Idempotents.toKaroubiEquivalence
AlgebraicTopology.DoldKan.N₁
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.map
CategoryTheory.Idempotents.toKaroubi
AlgebraicTopology.NormalizedMooreComplex.obj
CategoryTheory.Functor.comp
AlgebraicTopology.normalizedMooreComplex
CategoryTheory.Iso.hom
AlgebraicTopology.DoldKan.N₁_iso_normalizedMooreComplex_comp_toKaroubi
CategoryTheory.Functor.id
CategoryTheory.Equivalence.unitIso
—CategoryTheory.Idempotents.isIdempotentComplete_of_abelian
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
equivalence_functor šŸ“–mathematical—CategoryTheory.Equivalence.functor
CategoryTheory.SimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.instCategorySimplicialObject
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
equivalence
N
—AddRightCancelSemigroup.toIsRightCancelAdd
equivalence_inverse šŸ“–mathematical—CategoryTheory.Equivalence.inverse
CategoryTheory.SimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.instCategorySimplicialObject
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
equivalence
Ī“
—AddRightCancelSemigroup.toIsRightCancelAdd

---

← Back to Index