Documentation Verification Report

EquivalenceAdditive

πŸ“ Source: Mathlib/AlgebraicTopology/DoldKan/EquivalenceAdditive.lean

Statistics

MetricCount
DefinitionsN, equivalence, Ξ“
3
Theoremsequivalence_counitIso, equivalence_functor, equivalence_inverse, equivalence_unitIso
4
Total7

CategoryTheory.Preadditive.DoldKan

Definitions

NameCategoryTheorems
N πŸ“–CompOp
1 mathmath: equivalence_functor
equivalence πŸ“–CompOp
8 mathmath: equivalence_unitIso, equivalence_functor, equivalence_counitIso, CategoryTheory.Idempotents.DoldKan.hΞ΅, CategoryTheory.Idempotents.DoldKan.Nβ‚‚_map_isoΞ“β‚€_hom_app_f, equivalence_inverse, CategoryTheory.Idempotents.DoldKan.isoN₁_hom_app_f, CategoryTheory.Idempotents.DoldKan.hΞ·
Ξ“ πŸ“–CompOp
1 mathmath: equivalence_inverse

Theorems

NameKindAssumesProvesValidatesDepends On
equivalence_counitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.counitIso
CategoryTheory.Idempotents.Karoubi
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.Karoubi.instCategory
equivalence
AlgebraicTopology.DoldKan.Nβ‚‚Ξ“β‚‚
β€”AddRightCancelSemigroup.toIsRightCancelAdd
equivalence_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
CategoryTheory.Idempotents.Karoubi
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.Karoubi.instCategory
equivalence
N
β€”AddRightCancelSemigroup.toIsRightCancelAdd
equivalence_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
CategoryTheory.Idempotents.Karoubi
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.Karoubi.instCategory
equivalence
Ξ“
β€”AddRightCancelSemigroup.toIsRightCancelAdd
equivalence_unitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.unitIso
CategoryTheory.Idempotents.Karoubi
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.Karoubi.instCategory
equivalence
AlgebraicTopology.DoldKan.Ξ“β‚‚Nβ‚‚
β€”AddRightCancelSemigroup.toIsRightCancelAdd

---

← Back to Index