Documentation Verification Report

EquivalencePseudoabelian

📁 Source: Mathlib/AlgebraicTopology/DoldKan/EquivalencePseudoabelian.lean

Statistics

MetricCount
DefinitionsN, equivalence, isoN₁, isoΓ₀, Γ, ε, η
7
TheoremsN_map, N_obj, N₂_map_isoΓ₀_hom_app_f, equivalence_counitIso, equivalence_functor, equivalence_inverse, equivalence_unitIso, , , isoN₁_hom_app_f, Γ_map_app, Γ_obj_map, Γ_obj_obj, η_hom_app_f, η_inv_app_f
15
Total22

CategoryTheory.Idempotents.DoldKan

Definitions

NameCategoryTheorems
N 📖CompOp
7 mathmath: N_obj, η_inv_app_f, equivalence_functor, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, N_map, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, η_hom_app_f
equivalence 📖CompOp
4 mathmath: equivalence_counitIso, equivalence_inverse, equivalence_functor, equivalence_unitIso
isoN₁ 📖CompOp
3 mathmath: , isoN₁_hom_app_f,
isoΓ₀ 📖CompOp
2 mathmath: N₂_map_isoΓ₀_hom_app_f,
Γ 📖CompOp
8 mathmath: N₂_map_isoΓ₀_hom_app_f, equivalence_inverse, η_inv_app_f, Γ_obj_map, Γ_obj_obj, Γ_map_app, , η_hom_app_f
ε 📖CompOp
1 mathmath: equivalence_unitIso
η 📖CompOp
3 mathmath: equivalence_counitIso, η_inv_app_f, η_hom_app_f

Theorems

NameKindAssumesProvesValidatesDepends On
N_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
N
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.Idempotents.toKaroubiEquivalence
CategoryTheory.Functor.obj
AlgebraicTopology.DoldKan.N₁
AddRightCancelSemigroup.toIsRightCancelAdd
N_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
N
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Equivalence.inverse
CategoryTheory.Idempotents.toKaroubiEquivalence
AlgebraicTopology.DoldKan.N₁
AddRightCancelSemigroup.toIsRightCancelAdd
N₂_map_isoΓ₀_hom_app_f 📖mathematicalCategoryTheory.Idempotents.Karoubi.Hom.f
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi.instCategory
AlgebraicTopology.DoldKan.N₂
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Idempotents.toKaroubiEquivalence
CategoryTheory.Idempotents.instIsIdempotentCompleteHomologicalComplex
CategoryTheory.Equivalence.inverse
CategoryTheory.Preadditive.DoldKan.equivalence
Γ
CategoryTheory.Idempotents.instIsIdempotentCompleteSimplicialObject
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
isoΓ₀
AlgebraicTopology.DoldKan.PInfty
CategoryTheory.Idempotents.Karoubi.X
HomologicalComplex.hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.instIsIdempotentCompleteHomologicalComplex
CategoryTheory.Idempotents.instIsIdempotentCompleteSimplicialObject
CategoryTheory.Category.comp_id
AlgebraicTopology.DoldKan.PInfty_idem
equivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.SimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.instCategorySimplicialObject
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
equivalence
η
AlgebraicTopology.DoldKan.Compatibility.equivalenceCounitIso_eq
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.instIsIdempotentCompleteSimplicialObject
equivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.SimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.instCategorySimplicialObject
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
equivalence
N
AddRightCancelSemigroup.toIsRightCancelAdd
equivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.SimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.instCategorySimplicialObject
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
equivalence
Γ
AddRightCancelSemigroup.toIsRightCancelAdd
equivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.SimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.instCategorySimplicialObject
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
equivalence
ε
AlgebraicTopology.DoldKan.Compatibility.equivalenceUnitIso_eq
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.instIsIdempotentCompleteSimplicialObject
📖mathematicalAlgebraicTopology.DoldKan.Compatibility.υ
CategoryTheory.SimplicialObject
CategoryTheory.Idempotents.Karoubi
CategoryTheory.instCategorySimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Idempotents.toKaroubiEquivalence
CategoryTheory.Idempotents.instIsIdempotentCompleteSimplicialObject
CategoryTheory.Preadditive.DoldKan.equivalence
AlgebraicTopology.DoldKan.N₁
isoN₁
AlgebraicTopology.DoldKan.Γ₂N₁
CategoryTheory.Idempotents.instIsIdempotentCompleteSimplicialObject
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Iso.ext
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Iso.inv_hom_id
CategoryTheory.NatTrans.ext'
CategoryTheory.NatTrans.comp_app
AlgebraicTopology.DoldKan.Γ₂N₁_inv
AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans
AlgebraicTopology.DoldKan.Compatibility.υ_hom_app
CategoryTheory.Preadditive.DoldKan.equivalence_unitIso
CategoryTheory.Iso.app_inv
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.comp_app_assoc
AlgebraicTopology.DoldKan.Γ₂N₂_inv
CategoryTheory.NatTrans.id_app
CategoryTheory.Category.id_comp
AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso_inv_app
CategoryTheory.Functor.map_comp
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Functor.map_id
📖mathematicalAlgebraicTopology.DoldKan.Compatibility.τ₀
CategoryTheory.Idempotents.Karoubi
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Idempotents.toKaroubiEquivalence
CategoryTheory.Idempotents.instIsIdempotentCompleteHomologicalComplex
CategoryTheory.Preadditive.DoldKan.equivalence
AlgebraicTopology.DoldKan.Compatibility.τ₁
CategoryTheory.Idempotents.instIsIdempotentCompleteSimplicialObject
AlgebraicTopology.DoldKan.N₁
isoN₁
Γ
isoΓ₀
AlgebraicTopology.DoldKan.N₁Γ₀
CategoryTheory.Iso.ext
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.instIsIdempotentCompleteHomologicalComplex
CategoryTheory.Idempotents.instIsIdempotentCompleteSimplicialObject
CategoryTheory.NatTrans.ext'
AlgebraicTopology.DoldKan.Compatibility.τ₀_hom_app
AlgebraicTopology.DoldKan.Compatibility.τ₁_hom_app
AlgebraicTopology.DoldKan.N₂Γ₂_compatible_with_N₁Γ₀
AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_hom_app
N₂_map_isoΓ₀_hom_app_f
AlgebraicTopology.DoldKan.PInfty_idem_assoc
isoN₁_hom_app_f 📖mathematicalCategoryTheory.Idempotents.Karoubi.Hom.f
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Idempotents.toKaroubiEquivalence
CategoryTheory.Idempotents.instIsIdempotentCompleteSimplicialObject
CategoryTheory.Preadditive.DoldKan.equivalence
AlgebraicTopology.DoldKan.N₁
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
isoN₁
AlgebraicTopology.DoldKan.PInfty
CategoryTheory.Idempotents.Karoubi.X
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.instIsIdempotentCompleteSimplicialObject
Γ_map_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
SimplicialObject.Split
SimplicialObject.instCategorySplit
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
SimplicialObject.Split.forget
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AlgebraicTopology.DoldKan.Γ₀'
CategoryTheory.Functor.map
AddRightCancelSemigroup.toIsRightCancelAdd
Γ
SimplicialObject.Splitting.desc
AlgebraicTopology.DoldKan.Γ₀.obj
AlgebraicTopology.DoldKan.Γ₀.splitting
AlgebraicTopology.DoldKan.Γ₀.Obj.obj₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.N
SimplexCategory.len
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
HomologicalComplex.X
HomologicalComplex.Hom.f
SimplicialObject.Splitting.IndexSet
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.cofan
AddRightCancelSemigroup.toIsRightCancelAdd
Γ_obj_map 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
Γ
AlgebraicTopology.DoldKan.Γ₀.Obj.map
AddRightCancelSemigroup.toIsRightCancelAdd
Γ_obj_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
Γ
AlgebraicTopology.DoldKan.Γ₀.Obj.obj₂
AddRightCancelSemigroup.toIsRightCancelAdd
η_hom_app_f 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
Γ
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
AlgebraicTopology.DoldKan.N₁
CategoryTheory.Equivalence.inverse
CategoryTheory.Idempotents.toKaroubiEquivalence
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.category
N
η
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.map
AlgebraicTopology.DoldKan.N₁Γ₀
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.unitIso
CategoryTheory.Category.id_comp
η_inv_app_f 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
Γ
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
AlgebraicTopology.DoldKan.N₁
CategoryTheory.Equivalence.inverse
CategoryTheory.Idempotents.toKaroubiEquivalence
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.category
N
η
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Equivalence.functor
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.map
AlgebraicTopology.DoldKan.N₁Γ₀
CategoryTheory.Category.comp_id

---

← Back to Index