Documentation Verification Report

Faces

📁 Source: Mathlib/AlgebraicTopology/DoldKan/Faces.lean

Statistics

MetricCount
DefinitionsHigherFacesVanish
1
Theoremscomp_Hσ_eq, comp_Hσ_eq_zero, comp_δ_eq_zero, comp_δ_eq_zero_assoc, induction, of_comp, of_succ
7
Total8

AlgebraicTopology.DoldKan

Definitions

NameCategoryTheorems
HigherFacesVanish 📖MathDef
4 mathmath: HigherFacesVanish.inclusionOfMooreComplexMap, HigherFacesVanish.on_Γ₀_summand_id, HigherFacesVanish.of_P, comp_P_eq_self_iff

AlgebraicTopology.DoldKan.HigherFacesVanish

Theorems

NameKindAssumesProvesValidatesDepends On
comp_Hσ_eq 📖mathematicalAlgebraicTopology.DoldKan.HigherFacesVanishCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
AlgebraicTopology.DoldKan.Hσ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.SimplicialObject.δ
CategoryTheory.SimplicialObject.σ
AddRightCancelSemigroup.toIsRightCancelAdd
AlgebraicTopology.DoldKan.Hσ.eq_1
Homotopy.nullHomotopicMap'_f
AlgebraicTopology.DoldKan.hσ'_eq
AlgebraicTopology.AlternatingFaceMapComplex.obj_d_eq
CategoryTheory.Category.comp_id
CategoryTheory.Preadditive.sum_comp
CategoryTheory.Preadditive.comp_sum
CategoryTheory.Preadditive.comp_add
Finset.sum_congr
CategoryTheory.Preadditive.comp_zsmul
CategoryTheory.Preadditive.zsmul_comp
Fin.sum_congr'
Fin.sum_trunc
CategoryTheory.Limits.zero_comp
smul_zero
CategoryTheory.Category.assoc
add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
lt_of_lt_of_le
CategoryTheory.SimplicialObject.δ_comp_σ_of_gt'
comp_δ_eq_zero_assoc
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
Nat.instZeroLEOneClass
zsmul_zero
Fin.sum_univ_castSucc
add_assoc
add_zero
add_comm
pow_add
Odd.neg_one_pow
neg_smul
one_zsmul
CategoryTheory.SimplicialObject.δ_comp_σ_self'
CategoryTheory.SimplicialObject.δ_comp_σ_succ'
pow_one
mul_neg
mul_one
neg_mul
add_neg_cancel
Finset.sum_add_distrib
Finset.sum_eq_zero
Fin.le_iff_val_le_val
CategoryTheory.SimplicialObject.δ_comp_σ_of_le
add_eq_zero_iff_eq_neg
neg_zsmul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.neg_mul
comp_Hσ_eq_zero 📖mathematicalAlgebraicTopology.DoldKan.HigherFacesVanishCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
AlgebraicTopology.DoldKan.Hσ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
Homotopy.nullHomotopicMap'_f
AlgebraicTopology.DoldKan.hσ'_eq_zero
CategoryTheory.Limits.comp_zero
zero_add
CategoryTheory.Limits.zero_comp
AlgebraicTopology.DoldKan.hσ'_eq
pow_zero
one_zsmul
CategoryTheory.Category.comp_id
AlgebraicTopology.AlternatingFaceMapComplex.obj_d_eq
CategoryTheory.Preadditive.comp_sum
Fin.sum_univ_succ
Fintype.sum_eq_zero
CategoryTheory.Preadditive.comp_zsmul
add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
lt_of_lt_of_le
CategoryTheory.SimplicialObject.δ_comp_σ_of_gt'
comp_δ_eq_zero_assoc
zsmul_zero
add_zero
one_smul
CategoryTheory.SimplicialObject.δ_comp_σ_self
pow_one
neg_smul
CategoryTheory.Preadditive.comp_neg
CategoryTheory.SimplicialObject.δ_comp_σ_succ
add_neg_cancel
comp_δ_eq_zero 📖mathematicalAlgebraicTopology.DoldKan.HigherFacesVanishCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.SimplicialObject.δ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
comp_δ_eq_zero_assoc 📖mathematicalAlgebraicTopology.DoldKan.HigherFacesVanishCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.SimplicialObject.δ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_δ_eq_zero
induction 📖mathematicalAlgebraicTopology.DoldKan.HigherFacesVanishCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
Quiver.Hom
ChainComplex
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instCategory
HomologicalComplex.instAddHom
CategoryTheory.CategoryStruct.id
AlgebraicTopology.DoldKan.Hσ
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Preadditive.comp_add
CategoryTheory.Category.comp_id
CategoryTheory.Preadditive.add_comp
comp_Hσ_eq_zero
CategoryTheory.Limits.zero_comp
add_zero
comp_Hσ_eq
CategoryTheory.Preadditive.neg_comp
add_neg_eq_zero
CategoryTheory.Category.assoc
Fin.eq_zero
CategoryTheory.SimplicialObject.δ_comp_σ_succ
Ne.le_iff_lt
IsRightCancelAdd.addRightStrictMono_of_addRightMono
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
add_lt_add_iff_right
lt_of_lt_of_le
CategoryTheory.SimplicialObject.δ_comp_σ_of_gt'
LE.le.lt_or_eq
Fin.le_iff_val_le_val
CategoryTheory.SimplicialObject.δ_comp_δ''_assoc
CategoryTheory.SimplicialObject.δ_comp_δ_self'_assoc
of_comp 📖mathematicalAlgebraicTopology.DoldKan.HigherFacesVanishCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.Category.assoc
CategoryTheory.Limits.comp_zero
of_succ 📖AlgebraicTopology.DoldKan.HigherFacesVanishle_add_right
Nat.instCanonicallyOrderedAdd

---

← Back to Index