Documentation Verification Report

FunctorGamma

📁 Source: Mathlib/AlgebraicTopology/DoldKan/FunctorGamma.lean

Statistics

MetricCount
DefinitionsIsδ₀, Γ₀, Γ₀', mapMono, map, obj₂, summand, map, obj, splitting, Γ₂
11
Theoremson_Γ₀_summand_id, eq_δ₀, iff, PInfty_on_Γ₀_splitting_summand_eq_self, PInfty_on_Γ₀_splitting_summand_eq_self_assoc, Γ₀'_map_F, Γ₀'_map_f, Γ₀'_obj, mapMono_comp, mapMono_comp_assoc, mapMono_eq_zero, mapMono_id, mapMono_naturality, mapMono_naturality_assoc, mapMono_δ₀, mapMono_δ₀', mapMono_on_summand_id, mapMono_on_summand_id_assoc, map_epi_on_summand_id, map_epi_on_summand_id_assoc, map_on_summand, map_on_summand', map_on_summand'_assoc, map_on_summand_assoc, map_on_summand₀, map_on_summand₀', map_on_summand₀'_assoc, map_on_summand₀_assoc, map_app, obj_map, obj_obj, Γ₀_map_app, Γ₀_obj_map, Γ₀_obj_obj, Γ₂_map_f_app, Γ₂_obj_X_map, Γ₂_obj_X_obj, Γ₂_obj_p_app
38
Total49

AlgebraicTopology.DoldKan

Definitions

NameCategoryTheorems
Isδ₀ 📖MathDef
1 mathmath: Isδ₀.iff
Γ₀ 📖CompOp
14 mathmath: N₂Γ₂ToKaroubiIso_inv_app, Γ₂_obj_p_app, Γ₀_obj_map, N₁Γ₀_hom_app_f_f, N₂Γ₂ToKaroubiIso_hom_app, N₂Γ₂_compatible_with_N₁Γ₀, whiskerLeft_toKaroubi_N₂Γ₂_hom, Γ₀_map_app, Γ₀_obj_obj, N₁Γ₀_hom_app, N₁Γ₀_inv_app, Γ₂_map_f_app, N₁Γ₀_inv_app_f_f, N₁Γ₀_app
Γ₀' 📖CompOp
5 mathmath: Γ₀'_obj, Γ₀'_map_F, Γ₀_map_app, CategoryTheory.Idempotents.DoldKan.Γ_map_app, Γ₀'_map_f
Γ₂ 📖CompOp
20 mathmath: N₂Γ₂ToKaroubiIso_inv_app, identity_N₂, instIsIsoFunctorSimplicialObjectKaroubiNatTrans, instIsIsoFunctorKaroubiSimplicialObjectNatTrans, Γ₂_obj_p_app, compatibility_Γ₂N₁_Γ₂N₂_natTrans, Γ₂N₂ToKaroubiIso_hom_app, Γ₂_obj_X_map, N₂Γ₂_inv_app_f_f, N₂Γ₂ToKaroubiIso_hom_app, N₂Γ₂_compatible_with_N₁Γ₀, whiskerLeft_toKaroubi_N₂Γ₂_hom, Γ₂N₂ToKaroubiIso_inv_app, Γ₂N₁.natTrans_app_f_app, Γ₂_obj_X_obj, Γ₂_map_f_app, Γ₂N₁_inv, identity_N₂_objectwise, Γ₂N₂_inv, Γ₂N₂.natTrans_app_f_app

Theorems

NameKindAssumesProvesValidatesDepends On
PInfty_on_Γ₀_splitting_summand_eq_self 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.N
Γ₀.obj
Γ₀.splitting
Opposite.op
SimplexCategory
SimplicialObject.Splitting.IndexSet.id
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
SimplicialObject.Splitting.IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
SimplicialObject.Splitting.cofan
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
PInfty
AddRightCancelSemigroup.toIsRightCancelAdd
PInfty_f
P_f_0_eq
CategoryTheory.Category.comp_id
HigherFacesVanish.comp_P_eq_self
HigherFacesVanish.on_Γ₀_summand_id
PInfty_on_Γ₀_splitting_summand_eq_self_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.N
Γ₀.obj
Γ₀.splitting
Opposite.op
SimplexCategory
SimplicialObject.Splitting.IndexSet.id
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
SimplicialObject.Splitting.IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
SimplicialObject.Splitting.cofan
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
PInfty
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
PInfty_on_Γ₀_splitting_summand_eq_self
Γ₀'_map_F 📖mathematicalSimplicialObject.Split.Hom.F
SimplicialObject.Split.mk'
Γ₀.obj
Γ₀.splitting
CategoryTheory.Functor.map
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
SimplicialObject.Split
SimplicialObject.instCategorySplit
Γ₀'
Γ₀.map
AddRightCancelSemigroup.toIsRightCancelAdd
Γ₀'_map_f 📖mathematicalSimplicialObject.Split.Hom.f
SimplicialObject.Split.mk'
Γ₀.obj
Γ₀.splitting
CategoryTheory.Functor.map
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
SimplicialObject.Split
SimplicialObject.instCategorySplit
Γ₀'
HomologicalComplex.Hom.f
AddRightCancelSemigroup.toIsRightCancelAdd
Γ₀'_obj 📖mathematicalCategoryTheory.Functor.obj
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
SimplicialObject.Split
SimplicialObject.instCategorySplit
Γ₀'
SimplicialObject.Split.mk'
Γ₀.obj
Γ₀.splitting
AddRightCancelSemigroup.toIsRightCancelAdd
Γ₀_map_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
SimplicialObject.Split
SimplicialObject.instCategorySplit
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
SimplicialObject.Split.forget
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
Γ₀'
CategoryTheory.Functor.map
AddRightCancelSemigroup.toIsRightCancelAdd
Γ₀
SimplicialObject.Splitting.desc
Γ₀.obj
Γ₀.splitting
Γ₀.Obj.obj₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.N
SimplexCategory.len
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
HomologicalComplex.X
HomologicalComplex.Hom.f
SimplicialObject.Splitting.IndexSet
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.cofan
AddRightCancelSemigroup.toIsRightCancelAdd
Γ₀_obj_map 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
Γ₀
Γ₀.Obj.map
AddRightCancelSemigroup.toIsRightCancelAdd
Γ₀_obj_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
Γ₀
Γ₀.Obj.obj₂
AddRightCancelSemigroup.toIsRightCancelAdd
Γ₂_map_f_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Idempotents.Karoubi.X
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.obj
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Idempotents.toKaroubi
Γ₀
CategoryTheory.Idempotents.Karoubi.Hom.f
CategoryTheory.Functor.map
CategoryTheory.Idempotents.Karoubi.p
AddRightCancelSemigroup.toIsRightCancelAdd
Γ₂
SimplicialObject.Splitting.desc
Γ₀.obj
Γ₀.splitting
Γ₀.Obj.obj₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.N
SimplexCategory.len
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
HomologicalComplex.X
HomologicalComplex.Hom.f
SimplicialObject.Splitting.IndexSet
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.cofan
AddRightCancelSemigroup.toIsRightCancelAdd
Γ₂_obj_X_map 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Idempotents.Karoubi.X
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.Karoubi.instCategory
Γ₂
Γ₀.Obj.map
AddRightCancelSemigroup.toIsRightCancelAdd
Γ₂_obj_X_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Idempotents.Karoubi.X
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.Karoubi.instCategory
Γ₂
Γ₀.Obj.obj₂
AddRightCancelSemigroup.toIsRightCancelAdd
Γ₂_obj_p_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Idempotents.Karoubi.X
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.obj
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.whiskeringRight
CategoryTheory.Idempotents.toKaroubi
Γ₀
CategoryTheory.Idempotents.Karoubi.p
AddRightCancelSemigroup.toIsRightCancelAdd
Γ₂
SimplicialObject.Splitting.desc
Γ₀.obj
Γ₀.splitting
Γ₀.Obj.obj₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.N
SimplexCategory.len
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
HomologicalComplex.X
HomologicalComplex.Hom.f
SimplicialObject.Splitting.IndexSet
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.cofan
AddRightCancelSemigroup.toIsRightCancelAdd

AlgebraicTopology.DoldKan.HigherFacesVanish

Theorems

NameKindAssumesProvesValidatesDepends On
on_Γ₀_summand_id 📖mathematicalAlgebraicTopology.DoldKan.HigherFacesVanish
AlgebraicTopology.DoldKan.Γ₀.obj
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.N
AlgebraicTopology.DoldKan.Γ₀.splitting
Opposite.op
SimplexCategory
SimplicialObject.Splitting.IndexSet.id
SimplicialObject.Splitting.IndexSet
SimplicialObject.Splitting.cofan
AddRightCancelSemigroup.toIsRightCancelAdd
SimplexCategory.instMonoδ
AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id
CategoryTheory.Limits.zero_comp
AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zero

AlgebraicTopology.DoldKan.Isδ₀

Theorems

NameKindAssumesProvesValidatesDepends On
eq_δ₀ 📖mathematicalAlgebraicTopology.DoldKan.Isδ₀SimplexCategory.δSimplexCategory.eq_δ_of_mono
SimplexCategory.instMonoδ
iff
iff 📖mathematicalAlgebraicTopology.DoldKan.Isδ₀
SimplexCategory.δ
SimplexCategory.instMonoδ
SimplexCategory.instMonoδ
Fin.succAbove_ne_zero_zero

AlgebraicTopology.DoldKan.Γ₀

Definitions

NameCategoryTheorems
map 📖CompOp
2 mathmath: AlgebraicTopology.DoldKan.Γ₀'_map_F, map_app
obj 📖CompOp
30 mathmath: AlgebraicTopology.DoldKan.Γ₀NondegComplexIso_inv_f, AlgebraicTopology.DoldKan.HigherFacesVanish.on_Γ₀_summand_id, Obj.map_epi_on_summand_id_assoc, Obj.map_on_summand_assoc, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self_assoc, AlgebraicTopology.DoldKan.Γ₀'_obj, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, AlgebraicTopology.DoldKan.Γ₀NondegComplexIso_hom_f, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app_f_f, AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f, AlgebraicTopology.DoldKan.Γ₀'_map_F, Obj.mapMono_on_summand_id, AlgebraicTopology.DoldKan.Γ₀_map_app, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self, map_app, Obj.map_on_summand, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app, obj_map, CategoryTheory.Idempotents.DoldKan.Γ_map_app, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app, Obj.mapMono_on_summand_id_assoc, AlgebraicTopology.DoldKan.Γ₂_map_f_app, obj_obj, Obj.map_epi_on_summand_id, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app_f_f, Obj.map_on_summand', AlgebraicTopology.DoldKan.N₁Γ₀_app, Obj.map_on_summand'_assoc, AlgebraicTopology.DoldKan.Γ₀'_map_f
splitting 📖CompOp
28 mathmath: AlgebraicTopology.DoldKan.Γ₀NondegComplexIso_inv_f, AlgebraicTopology.DoldKan.HigherFacesVanish.on_Γ₀_summand_id, Obj.map_epi_on_summand_id_assoc, Obj.map_on_summand_assoc, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self_assoc, AlgebraicTopology.DoldKan.Γ₀'_obj, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, AlgebraicTopology.DoldKan.Γ₀NondegComplexIso_hom_f, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app_f_f, AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f, AlgebraicTopology.DoldKan.Γ₀'_map_F, Obj.mapMono_on_summand_id, AlgebraicTopology.DoldKan.Γ₀_map_app, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self, map_app, Obj.map_on_summand, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app, CategoryTheory.Idempotents.DoldKan.Γ_map_app, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app, Obj.mapMono_on_summand_id_assoc, AlgebraicTopology.DoldKan.Γ₂_map_f_app, Obj.map_epi_on_summand_id, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app_f_f, Obj.map_on_summand', AlgebraicTopology.DoldKan.N₁Γ₀_app, Obj.map_on_summand'_assoc, AlgebraicTopology.DoldKan.Γ₀'_map_f

Theorems

NameKindAssumesProvesValidatesDepends On
map_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
obj
map
SimplicialObject.Splitting.desc
splitting
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.N
SimplexCategory.len
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.Hom.f
SimplicialObject.Splitting.IndexSet
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.cofan
AddRightCancelSemigroup.toIsRightCancelAdd
obj_map 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
obj
Obj.map
obj_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
obj
Obj.obj₂

AlgebraicTopology.DoldKan.Γ₀.Obj

Definitions

NameCategoryTheorems
map 📖CompOp
8 mathmath: map_on_summand₀', AlgebraicTopology.DoldKan.Γ₀_obj_map, AlgebraicTopology.DoldKan.Γ₂_obj_X_map, map_on_summand₀, map_on_summand₀'_assoc, CategoryTheory.Idempotents.DoldKan.Γ_obj_map, map_on_summand₀_assoc, AlgebraicTopology.DoldKan.Γ₀.obj_map
obj₂ 📖CompOp
12 mathmath: map_on_summand₀', AlgebraicTopology.DoldKan.Γ₂_obj_p_app, map_on_summand₀, AlgebraicTopology.DoldKan.Γ₀_map_app, map_on_summand₀'_assoc, AlgebraicTopology.DoldKan.Γ₀_obj_obj, CategoryTheory.Idempotents.DoldKan.Γ_obj_obj, map_on_summand₀_assoc, CategoryTheory.Idempotents.DoldKan.Γ_map_app, AlgebraicTopology.DoldKan.Γ₂_obj_X_obj, AlgebraicTopology.DoldKan.Γ₂_map_f_app, AlgebraicTopology.DoldKan.Γ₀.obj_obj
summand 📖CompOp
4 mathmath: map_on_summand₀', map_on_summand₀, map_on_summand₀'_assoc, map_on_summand₀_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
mapMono_on_summand_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.N
AlgebraicTopology.DoldKan.Γ₀.obj
AlgebraicTopology.DoldKan.Γ₀.splitting
Opposite.op
SimplexCategory
SimplicialObject.Splitting.IndexSet.id
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
SimplicialObject.Splitting.IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
SimplicialObject.Splitting.cofan
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
SimplexCategory.len
Termwise.mapMono
map_on_summand
CategoryTheory.instEpiId
mapMono_on_summand_id_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.N
AlgebraicTopology.DoldKan.Γ₀.obj
AlgebraicTopology.DoldKan.Γ₀.splitting
Opposite.op
SimplexCategory
SimplicialObject.Splitting.IndexSet.id
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
SimplicialObject.Splitting.IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
SimplicialObject.Splitting.cofan
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
SimplexCategory.len
Termwise.mapMono
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapMono_on_summand_id
map_epi_on_summand_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.N
AlgebraicTopology.DoldKan.Γ₀.obj
AlgebraicTopology.DoldKan.Γ₀.splitting
Opposite.op
SimplexCategory
SimplicialObject.Splitting.IndexSet.id
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
SimplicialObject.Splitting.IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
SimplicialObject.Splitting.cofan
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.instMonoId
map_on_summand
Termwise.mapMono_id
CategoryTheory.Category.id_comp
map_epi_on_summand_id_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.N
AlgebraicTopology.DoldKan.Γ₀.obj
AlgebraicTopology.DoldKan.Γ₀.splitting
Opposite.op
SimplexCategory
SimplicialObject.Splitting.IndexSet.id
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
SimplicialObject.Splitting.IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
SimplicialObject.Splitting.cofan
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_epi_on_summand_id
map_on_summand 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
Opposite.unop
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
Quiver.Hom.unop
SimplicialObject.Splitting.IndexSet.e
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.N
AlgebraicTopology.DoldKan.Γ₀.obj
AlgebraicTopology.DoldKan.Γ₀.splitting
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
SimplicialObject.Splitting.IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
SimplicialObject.Splitting.cofan
CategoryTheory.Functor.obj
CategoryTheory.Category.opposite
CategoryTheory.Functor.map
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
SimplexCategory.len
Termwise.mapMono
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
Finite.of_fintype
map_on_summand₀
CategoryTheory.Category.comp_id
CategoryTheory.instMonoId
Termwise.mapMono_id
CategoryTheory.Category.id_comp
map_on_summand' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.N
AlgebraicTopology.DoldKan.Γ₀.obj
AlgebraicTopology.DoldKan.Γ₀.splitting
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
SimplicialObject.Splitting.IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
SimplicialObject.Splitting.cofan
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.map
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
SimplexCategory.len
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
CategoryTheory.Limits.image
Quiver.Hom.unop
SimplicialObject.Splitting.IndexSet.e
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
SimplexCategory.instHasStrongEpiMonoFactorisations
Termwise.mapMono
CategoryTheory.Limits.image.ι
CategoryTheory.Limits.instMonoι
SimplicialObject.Splitting.IndexSet.pull
map_on_summand
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
SimplexCategory.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.instMonoι
CategoryTheory.Limits.image.fac
map_on_summand'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.N
AlgebraicTopology.DoldKan.Γ₀.obj
AlgebraicTopology.DoldKan.Γ₀.splitting
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
SimplicialObject.Splitting.IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
SimplicialObject.Splitting.cofan
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.map
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
SimplexCategory.len
CategoryTheory.Limits.image
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
Quiver.Hom.unop
SimplicialObject.Splitting.IndexSet.e
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
SimplexCategory.instHasStrongEpiMonoFactorisations
Termwise.mapMono
CategoryTheory.Limits.image.ι
CategoryTheory.Limits.instMonoι
SimplicialObject.Splitting.IndexSet.pull
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
SimplexCategory.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.instMonoι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_on_summand'
map_on_summand_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
Opposite.unop
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
Quiver.Hom.unop
SimplicialObject.Splitting.IndexSet.e
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.N
AlgebraicTopology.DoldKan.Γ₀.obj
AlgebraicTopology.DoldKan.Γ₀.splitting
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
SimplicialObject.Splitting.IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
SimplicialObject.Splitting.cofan
CategoryTheory.Functor.obj
CategoryTheory.Category.opposite
CategoryTheory.Functor.map
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
SimplexCategory.len
Termwise.mapMono
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_on_summand
map_on_summand₀ 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
Opposite.unop
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
Quiver.Hom.unop
SimplicialObject.Splitting.IndexSet.e
summand
CategoryTheory.Limits.sigmaObj
SimplicialObject.Splitting.IndexSet
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasColimitsOfShape_discrete
Finite.of_fintype
SimplicialObject.Splitting.IndexSet.instFintype
CategoryTheory.Discrete.functor
obj₂
CategoryTheory.Limits.Sigma.ι
map
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
SimplexCategory.len
Termwise.mapMono
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
Finite.of_fintype
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
SimplexCategory.instHasStrongEpiMonoFactorisations
SimplexCategory.image_eq
SimplexCategory.image_ι_eq
SimplexCategory.factorThruImage_eq
map_on_summand₀' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
summand
CategoryTheory.Limits.sigmaObj
SimplicialObject.Splitting.IndexSet
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasColimitsOfShape_discrete
Finite.of_fintype
SimplicialObject.Splitting.IndexSet.instFintype
CategoryTheory.Discrete.functor
obj₂
CategoryTheory.Limits.Sigma.ι
map
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
SimplexCategory.smallCategory
CategoryTheory.Epi
CategoryTheory.Limits.image
Quiver.Hom.unop
SimplicialObject.Splitting.IndexSet.e
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
SimplexCategory.instHasStrongEpiMonoFactorisations
Termwise.mapMono
CategoryTheory.Limits.image.ι
CategoryTheory.Limits.instMonoι
SimplicialObject.Splitting.IndexSet.pull
map_on_summand₀
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
SimplexCategory.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.instMonoι
SimplicialObject.Splitting.IndexSet.fac_pull
map_on_summand₀'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
summand
CategoryTheory.Limits.sigmaObj
SimplicialObject.Splitting.IndexSet
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasColimitsOfShape_discrete
Finite.of_fintype
SimplicialObject.Splitting.IndexSet.instFintype
CategoryTheory.Discrete.functor
CategoryTheory.Limits.Sigma.ι
obj₂
map
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
SimplexCategory.len
CategoryTheory.Limits.image
SimplexCategory
SimplexCategory.smallCategory
Opposite.unop
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
Quiver.Hom.unop
SimplicialObject.Splitting.IndexSet.e
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
SimplexCategory.instHasStrongEpiMonoFactorisations
Termwise.mapMono
CategoryTheory.Limits.image.ι
CategoryTheory.Limits.instMonoι
SimplicialObject.Splitting.IndexSet.pull
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
Finite.of_fintype
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
SimplexCategory.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.instMonoι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_on_summand₀'
map_on_summand₀_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
Opposite.unop
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
Quiver.Hom.unop
SimplicialObject.Splitting.IndexSet.e
summand
CategoryTheory.Limits.sigmaObj
SimplicialObject.Splitting.IndexSet
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasColimitsOfShape_discrete
Finite.of_fintype
SimplicialObject.Splitting.IndexSet.instFintype
CategoryTheory.Discrete.functor
CategoryTheory.Limits.Sigma.ι
obj₂
map
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
SimplexCategory.len
Termwise.mapMono
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
Finite.of_fintype
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_on_summand₀

AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise

Definitions

NameCategoryTheorems
mapMono 📖CompOp
20 mathmath: mapMono_comp_assoc, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀', AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand_assoc, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀, mapMono_δ₀', mapMono_comp, AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀'_assoc, mapMono_eq_zero, mapMono_naturality, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀_assoc, AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id_assoc, mapMono_id, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand', AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInfty_assoc, mapMono_naturality_assoc, AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInfty, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'_assoc, mapMono_δ₀

Theorems

NameKindAssumesProvesValidatesDepends On
mapMono_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
SimplexCategory.len
mapMono
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.mono_comp
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.mono_comp
SimplexCategory.eq_id_of_mono
CategoryTheory.Category.comp_id
mapMono.congr_simp
mapMono_id
CategoryTheory.Category.id_comp
SimplexCategory.len_lt_of_mono
mapMono_eq_zero
AddLeftCancelSemigroup.toIsLeftCancelAdd
Unique.instSubsingleton
mapMono_δ₀'
HomologicalComplex.d_comp_d
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.zero_comp
mapMono_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
SimplexCategory.len
mapMono
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.mono_comp
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.mono_comp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapMono_comp
mapMono_eq_zero 📖mathematicalAlgebraicTopology.DoldKan.Isδ₀mapMono
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
SimplexCategory.len
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
mapMono_id 📖mathematicalmapMono
CategoryTheory.CategoryStruct.id
SimplexCategory
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
CategoryTheory.instMonoId
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
SimplexCategory.len
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.instMonoId
mapMono_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
SimplexCategory.len
mapMono
HomologicalComplex.Hom.f
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
HomologicalComplex.Hom.comm
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
mapMono_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
SimplexCategory.len
mapMono
HomologicalComplex.Hom.f
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapMono_naturality
mapMono_δ₀ 📖mathematicalmapMono
SimplexCategory.δ
SimplexCategory.instMonoδ
HomologicalComplex.d
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
mapMono_δ₀'
SimplexCategory.instMonoδ
AlgebraicTopology.DoldKan.Isδ₀.iff
mapMono_δ₀' 📖mathematicalAlgebraicTopology.DoldKan.Isδ₀mapMono
HomologicalComplex.d
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
SimplexCategory.len
AddRightCancelSemigroup.toIsRightCancelAdd
AddLeftCancelSemigroup.toIsLeftCancelAdd

---

← Back to Index