Documentation Verification Report

FunctorN

📁 Source: Mathlib/AlgebraicTopology/DoldKan/FunctorN.lean

Statistics

MetricCount
DefinitionsN₁, N₂, toKaroubiCompN₂IsoN₁
3
TheoremsN₁_map_f, N₁_obj_X, N₁_obj_p, N₂_map_f_f, N₂_obj_X_X, N₂_obj_X_d, N₂_obj_p_f, toKaroubiCompN₂IsoN₁_hom_app, toKaroubiCompN₂IsoN₁_inv_app
9
Total12

AlgebraicTopology.DoldKan

Definitions

NameCategoryTheorems
N₁ 📖CompOp
38 mathmath: N₁_map_f, N₂Γ₂ToKaroubiIso_inv_app, instIsIsoFunctorSimplicialObjectKaroubiNatTrans, N₁_obj_p, CategoryTheory.Idempotents.DoldKan.hε, compatibility_Γ₂N₁_Γ₂N₂_natTrans, N₁Γ₀_hom_app_f_f, Γ₂N₂ToKaroubiIso_hom_app, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_inv_f_f, N₂Γ₂ToKaroubiIso_hom_app, compatibility_N₂_N₁_karoubi, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, N₂Γ₂_compatible_with_N₁Γ₀, whiskerLeft_toKaroubi_N₂Γ₂_hom, CategoryTheory.Idempotents.DoldKan.N_obj, toKaroubiCompN₂IsoN₁_hom_app, CategoryTheory.Idempotents.DoldKan.η_inv_app_f, toKaroubiCompN₂IsoN₁_inv_app, N₁_obj_X, Γ₂N₂ToKaroubiIso_inv_app, instReflectsIsomorphismsSimplicialObjectKaroubiChainComplexNatN₁, N₂_obj_p_f, CategoryTheory.Idempotents.DoldKan.isoN₁_hom_app_f, N₁Γ₀_hom_app, Γ₂N₁.natTrans_app_f_app, N₁Γ₀_inv_app, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f, Γ₂N₁_inv, CategoryTheory.Idempotents.DoldKan.hη, N₁Γ₀_inv_app_f_f, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f, N₂_map_f_f, N₁Γ₀_app, CategoryTheory.Idempotents.DoldKan.N_map, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, CategoryTheory.Idempotents.DoldKan.η_hom_app_f, Γ₂N₂.natTrans_app_f_app
N₂ 📖CompOp
22 mathmath: N₂Γ₂ToKaroubiIso_inv_app, identity_N₂, instIsIsoFunctorKaroubiSimplicialObjectNatTrans, CategoryTheory.Idempotents.DoldKan.N₂_map_isoΓ₀_hom_app_f, compatibility_Γ₂N₁_Γ₂N₂_natTrans, Γ₂N₂ToKaroubiIso_hom_app, N₂Γ₂_inv_app_f_f, N₂Γ₂ToKaroubiIso_hom_app, compatibility_N₂_N₁_karoubi, N₂Γ₂_compatible_with_N₁Γ₀, whiskerLeft_toKaroubi_N₂Γ₂_hom, toKaroubiCompN₂IsoN₁_hom_app, toKaroubiCompN₂IsoN₁_inv_app, Γ₂N₂ToKaroubiIso_inv_app, N₂_obj_p_f, N₂_obj_X_X, N₂_obj_X_d, instReflectsIsomorphismsKaroubiSimplicialObjectChainComplexNatN₂, identity_N₂_objectwise, N₂_map_f_f, Γ₂N₂_inv, Γ₂N₂.natTrans_app_f_app
toKaroubiCompN₂IsoN₁ 📖CompOp
4 mathmath: Γ₂N₂ToKaroubiIso_hom_app, toKaroubiCompN₂IsoN₁_hom_app, toKaroubiCompN₂IsoN₁_inv_app, Γ₂N₂ToKaroubiIso_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
N₁_map_f 📖mathematical—CategoryTheory.Idempotents.Karoubi.Hom.f
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AlgebraicTopology.AlternatingFaceMapComplex.obj
PInfty
PInfty_idem
CategoryTheory.Functor.map
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.Karoubi.instCategory
N₁
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Idempotents.Karoubi.X
AlgebraicTopology.AlternatingFaceMapComplex.map
—PInfty_idem
AddRightCancelSemigroup.toIsRightCancelAdd
N₁_obj_X 📖mathematical—CategoryTheory.Idempotents.Karoubi.X
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.Karoubi.instCategory
N₁
AlgebraicTopology.AlternatingFaceMapComplex.obj
—AddRightCancelSemigroup.toIsRightCancelAdd
N₁_obj_p 📖mathematical—CategoryTheory.Idempotents.Karoubi.p
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.Karoubi.instCategory
N₁
PInfty
—AddRightCancelSemigroup.toIsRightCancelAdd
N₂_map_f_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Idempotents.Karoubi.X
ChainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
N₁
CategoryTheory.Idempotents.Karoubi.Hom.f
CategoryTheory.Functor.map
CategoryTheory.Idempotents.Karoubi.p
AddRightCancelSemigroup.toIsRightCancelAdd
N₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
AlgebraicTopology.AlternatingFaceMapComplex.obj
PInfty
CategoryTheory.NatTrans.app
—PInfty_idem
AddRightCancelSemigroup.toIsRightCancelAdd
N₂_obj_X_X 📖mathematical—HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Idempotents.Karoubi.X
ChainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi.instCategory
N₂
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
—AddRightCancelSemigroup.toIsRightCancelAdd
N₂_obj_X_d 📖mathematical—HomologicalComplex.d
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Idempotents.Karoubi.X
ChainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi.instCategory
N₂
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.CategoryStruct.comp
CategoryTheory.eqToHom
Finset.sum
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Finset.univ
Fin.fintype
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Monoid.toNatPow
Int.instMonoid
CategoryTheory.SimplicialObject.δ
CategoryTheory.Limits.HasZeroMorphisms.zero
—AddRightCancelSemigroup.toIsRightCancelAdd
N₂_obj_p_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Idempotents.Karoubi.X
ChainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
N₁
CategoryTheory.Idempotents.Karoubi.p
AddRightCancelSemigroup.toIsRightCancelAdd
N₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
AlgebraicTopology.AlternatingFaceMapComplex.obj
PInfty
CategoryTheory.NatTrans.app
—PInfty_idem
AddRightCancelSemigroup.toIsRightCancelAdd
toKaroubiCompN₂IsoN₁_hom_app 📖mathematical—CategoryTheory.Idempotents.Karoubi.Hom.f
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.comp
CategoryTheory.Idempotents.toKaroubi
N₂
N₁
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
toKaroubiCompN₂IsoN₁
PInfty
CategoryTheory.Idempotents.Karoubi.X
—AddRightCancelSemigroup.toIsRightCancelAdd
toKaroubiCompN₂IsoN₁_inv_app 📖mathematical—CategoryTheory.Idempotents.Karoubi.Hom.f
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
N₁
CategoryTheory.Functor.comp
CategoryTheory.Idempotents.toKaroubi
N₂
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
toKaroubiCompN₂IsoN₁
PInfty
—AddRightCancelSemigroup.toIsRightCancelAdd

---

← Back to Index