Documentation Verification Report

GammaCompN

📁 Source: Mathlib/AlgebraicTopology/DoldKan/GammaCompN.lean

Statistics

MetricCount
DefinitionsN₁Γ₀, N₂Γ₂, N₂Γ₂ToKaroubiIso, Γ₀'CompNondegComplexFunctor, Γ₀NondegComplexIso
5
TheoremsN₁Γ₀_app, N₁Γ₀_hom_app, N₁Γ₀_hom_app_f_f, N₁Γ₀_inv_app, N₁Γ₀_inv_app_f_f, N₂Γ₂ToKaroubiIso_hom_app, N₂Γ₂ToKaroubiIso_inv_app, N₂Γ₂_compatible_with_N₁Γ₀, N₂Γ₂_inv_app_f_f, whiskerLeft_toKaroubi_N₂Γ₂_hom, Γ₀NondegComplexIso_hom_f, Γ₀NondegComplexIso_inv_f
12
Total17

AlgebraicTopology.DoldKan

Definitions

NameCategoryTheorems
N₁Γ₀ 📖CompOp
10 mathmath: N₁Γ₀_hom_app_f_f, N₂Γ₂_compatible_with_N₁Γ₀, whiskerLeft_toKaroubi_N₂Γ₂_hom, CategoryTheory.Idempotents.DoldKan.η_inv_app_f, N₁Γ₀_hom_app, N₁Γ₀_inv_app, CategoryTheory.Idempotents.DoldKan.hη, N₁Γ₀_inv_app_f_f, N₁Γ₀_app, CategoryTheory.Idempotents.DoldKan.η_hom_app_f
N₂Γ₂ 📖CompOp
6 mathmath: identity_N₂, CategoryTheory.Preadditive.DoldKan.equivalence_counitIso, N₂Γ₂_inv_app_f_f, N₂Γ₂_compatible_with_N₁Γ₀, whiskerLeft_toKaroubi_N₂Γ₂_hom, identity_N₂_objectwise
N₂Γ₂ToKaroubiIso 📖CompOp
4 mathmath: N₂Γ₂ToKaroubiIso_inv_app, N₂Γ₂ToKaroubiIso_hom_app, N₂Γ₂_compatible_with_N₁Γ₀, whiskerLeft_toKaroubi_N₂Γ₂_hom
Γ₀'CompNondegComplexFunctor 📖CompOp—
Γ₀NondegComplexIso 📖CompOp
5 mathmath: Γ₀NondegComplexIso_inv_f, Γ₀NondegComplexIso_hom_f, N₁Γ₀_hom_app, N₁Γ₀_inv_app, N₁Γ₀_app

Theorems

NameKindAssumesProvesValidatesDepends On
N₁Γ₀_app 📖mathematical—CategoryTheory.Iso.app
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
Γ₀
N₁
CategoryTheory.Idempotents.toKaroubi
N₁Γ₀
CategoryTheory.Iso.trans
CategoryTheory.Functor.obj
Γ₀.obj
SimplicialObject.Splitting.nondegComplex
Γ₀.splitting
CategoryTheory.Iso.symm
SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁
CategoryTheory.Functor.mapIso
Γ₀NondegComplexIso
—CategoryTheory.Iso.ext
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.Karoubi.hom_ext
HomologicalComplex.hom_ext
CategoryTheory.Iso.trans_assoc
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
SimplicialObject.Splitting.PInfty_comp_πSummand_id
N₁Γ₀_hom_app 📖mathematical—CategoryTheory.NatTrans.app
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
Γ₀
N₁
CategoryTheory.Idempotents.toKaroubi
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
N₁Γ₀
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Γ₀.obj
SimplicialObject.Splitting.nondegComplex
Γ₀.splitting
CategoryTheory.Iso.inv
SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁
CategoryTheory.Functor.map
Γ₀NondegComplexIso
—AddRightCancelSemigroup.toIsRightCancelAdd
N₁Γ₀_app
N₁Γ₀_hom_app_f_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Idempotents.Karoubi.X
ChainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
Γ₀
N₁
CategoryTheory.Idempotents.toKaroubi
CategoryTheory.Idempotents.Karoubi.Hom.f
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
N₁Γ₀
Γ₀.obj
SimplicialObject.Splitting.nondegComplex
Γ₀.splitting
CategoryTheory.Iso.inv
SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁
—AddRightCancelSemigroup.toIsRightCancelAdd
N₁Γ₀_hom_app
CategoryTheory.Category.comp_id
N₁Γ₀_inv_app 📖mathematical—CategoryTheory.NatTrans.app
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Idempotents.toKaroubi
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
Γ₀
N₁
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
N₁Γ₀
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplicialObject.Splitting.nondegComplex
Γ₀.obj
Γ₀.splitting
CategoryTheory.Functor.map
Γ₀NondegComplexIso
CategoryTheory.Iso.hom
SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁
—AddRightCancelSemigroup.toIsRightCancelAdd
N₁Γ₀_app
N₁Γ₀_inv_app_f_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Idempotents.Karoubi.X
ChainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Idempotents.toKaroubi
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
Γ₀
N₁
CategoryTheory.Idempotents.Karoubi.Hom.f
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
N₁Γ₀
SimplicialObject.Splitting.nondegComplex
Γ₀.obj
Γ₀.splitting
CategoryTheory.Iso.hom
SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁
—AddRightCancelSemigroup.toIsRightCancelAdd
N₁Γ₀_inv_app
CategoryTheory.Category.id_comp
N₂Γ₂ToKaroubiIso_hom_app 📖mathematical—CategoryTheory.Idempotents.Karoubi.Hom.f
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.comp
CategoryTheory.Idempotents.toKaroubi
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
Γ₂
N₂
Γ₀
N₁
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
N₂Γ₂ToKaroubiIso
PInfty
CategoryTheory.Idempotents.Karoubi.X
—HomologicalComplex.hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
PInfty_f_idem
SimplicialObject.Splitting.hom_ext'
SimplicialObject.Splitting.Κ_desc_assoc
CategoryTheory.Category.id_comp
N₂Γ₂ToKaroubiIso_inv_app 📖mathematical—CategoryTheory.Idempotents.Karoubi.Hom.f
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
Γ₀
N₁
CategoryTheory.Idempotents.toKaroubi
Γ₂
N₂
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
N₂Γ₂ToKaroubiIso
PInfty
—HomologicalComplex.hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.comp_id
PInfty_f_idem_assoc
SimplicialObject.Splitting.hom_ext'
SimplicialObject.Splitting.Κ_desc
CategoryTheory.Category.id_comp
N₂Γ₂_compatible_with_N₁Γ₀ 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.Idempotents.Karoubi
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
Γ₂
N₂
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
N₂Γ₂
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.toKaroubi
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Γ₀
N₁
N₂Γ₂ToKaroubiIso
N₁Γ₀
—CategoryTheory.congr_app
AddRightCancelSemigroup.toIsRightCancelAdd
whiskerLeft_toKaroubi_N₂Γ₂_hom
N₂Γ₂_inv_app_f_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Idempotents.Karoubi.X
ChainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
Γ₂
N₂
CategoryTheory.Idempotents.Karoubi.Hom.f
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
N₂Γ₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
SimplicialObject.Splitting.IndexSet
Opposite.op
SimplexCategory
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.N
Γ₀.obj
Γ₀.splitting
SimplicialObject.Splitting.cofan
CategoryTheory.Idempotents.Karoubi.p
SimplicialObject.Splitting.IndexSet.id
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.whiskeringLeft_obj_preimage_app
CategoryTheory.Idempotents.instIsIdempotentCompleteKaroubi
N₂Γ₂ToKaroubiIso_inv_app
N₁Γ₀_inv_app_f_f
PInfty_on_Γ₀_splitting_summand_eq_self
PInfty_on_Γ₀_splitting_summand_eq_self_assoc
SimplicialObject.Splitting.Κ_desc
CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem_assoc
whiskerLeft_toKaroubi_N₂Γ₂_hom 📖mathematical—CategoryTheory.Functor.whiskerLeft
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Idempotents.toKaroubi
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
Γ₂
N₂
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
N₂Γ₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Γ₀
N₁
N₂Γ₂ToKaroubiIso
N₁Γ₀
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.IsEquivalence.full
CategoryTheory.Idempotents.instIsEquivalenceFunctorKaroubiObjWhiskeringLeftToKaroubi
CategoryTheory.Idempotents.instIsIdempotentCompleteKaroubi
CategoryTheory.Functor.map_preimage
Γ₀NondegComplexIso_hom_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
SimplicialObject.Splitting.nondegComplex
Γ₀.obj
Γ₀.splitting
CategoryTheory.Iso.hom
ChainComplex
HomologicalComplex.instCategory
AddRightCancelSemigroup.toIsRightCancelAdd
Γ₀NondegComplexIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.N
—AddRightCancelSemigroup.toIsRightCancelAdd
Γ₀NondegComplexIso_inv_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
SimplicialObject.Splitting.nondegComplex
Γ₀.obj
Γ₀.splitting
CategoryTheory.Iso.inv
ChainComplex
HomologicalComplex.instCategory
AddRightCancelSemigroup.toIsRightCancelAdd
Γ₀NondegComplexIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.N
—AddRightCancelSemigroup.toIsRightCancelAdd

---

← Back to Index