| Name | Category | Theorems |
NâÎâ đ | CompOp | 10 mathmath: NâÎâ_hom_app_f_f, NâÎâ_compatible_with_NâÎâ, whiskerLeft_toKaroubi_NâÎâ_hom, CategoryTheory.Idempotents.DoldKan.Ρ_inv_app_f, NâÎâ_hom_app, NâÎâ_inv_app, CategoryTheory.Idempotents.DoldKan.hΡ, NâÎâ_inv_app_f_f, NâÎâ_app, CategoryTheory.Idempotents.DoldKan.Ρ_hom_app_f
|
NâÎâ đ | CompOp | 6 mathmath: identity_Nâ, CategoryTheory.Preadditive.DoldKan.equivalence_counitIso, NâÎâ_inv_app_f_f, NâÎâ_compatible_with_NâÎâ, whiskerLeft_toKaroubi_NâÎâ_hom, identity_Nâ_objectwise
|
NâÎâToKaroubiIso đ | CompOp | 4 mathmath: NâÎâToKaroubiIso_inv_app, NâÎâToKaroubiIso_hom_app, NâÎâ_compatible_with_NâÎâ, whiskerLeft_toKaroubi_NâÎâ_hom
|
Îâ'CompNondegComplexFunctor đ | CompOp | â |
ÎâNondegComplexIso đ | CompOp | 5 mathmath: ÎâNondegComplexIso_inv_f, ÎâNondegComplexIso_hom_f, NâÎâ_hom_app, NâÎâ_inv_app, NâÎâ_app
|