Documentation Verification Report

Homotopies

📁 Source: Mathlib/AlgebraicTopology/DoldKan/Homotopies.lean

Statistics

MetricCount
Definitions, c, homotopyHσToZero, , hσ', natTransHσ
6
TheoremsHσ_eq_zero, c_mk, cs_down_0_not_rel_left, hσ'_eq, hσ'_eq', hσ'_eq_zero, hσ'_naturality, map_Hσ, map_hσ'
9
Total15

AlgebraicTopology.DoldKan

Definitions

NameCategoryTheorems
📖CompOp
7 mathmath: map_Hσ, HigherFacesVanish.comp_Hσ_eq_zero, P_succ, Hσ_eq_zero, Q_succ, HigherFacesVanish.comp_Hσ_eq, HigherFacesVanish.induction
c 📖CompOp
2 mathmath: cs_down_0_not_rel_left, c_mk
homotopyHσToZero 📖CompOp
📖CompOp
hσ' 📖CompOp
5 mathmath: hσ'_eq, hσ'_eq_zero, map_hσ', hσ'_naturality, hσ'_eq'
natTransHσ 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
Hσ_eq_zero 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj

Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
Homotopy.nullHomotopicMap'_f_of_not_rel_left
cs_down_0_not_rel_left
hσ'_eq
pow_zero
one_zsmul
CategoryTheory.Category.comp_id
AlgebraicTopology.AlternatingFaceMapComplex.d_squared
ChainComplex.of_d
AlgebraicTopology.AlternatingFaceMapComplex.objD.eq_1
Fin.sum_univ_two
pow_one
one_smul
neg_smul
CategoryTheory.Preadditive.comp_add
CategoryTheory.Preadditive.comp_neg
add_neg_eq_zero
CategoryTheory.SimplicialObject.δ_comp_σ_succ
CategoryTheory.SimplicialObject.δ_comp_σ_self'
Fin.castSucc_zero'
hσ'_eq_zero
CategoryTheory.Limits.zero_comp
c_mk 📖mathematicalComplexShape.Rel
c
AddRightCancelSemigroup.toIsRightCancelAdd
cs_down_0_not_rel_left 📖mathematicalComplexShape.Rel
c
le_refl
hσ'_eq 📖mathematicalComplexShape.Rel
c
hσ'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
Monoid.toNatPow
Int.instMonoid
CategoryTheory.SimplicialObject.σ
CategoryTheory.eqToHom
hσ'_eq' 📖mathematicalhσ'
Nat.instOne
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
Monoid.toNatPow
Int.instMonoid
CategoryTheory.SimplicialObject.σ
AddRightCancelSemigroup.toIsRightCancelAdd
hσ'_eq
CategoryTheory.eqToHom_refl
CategoryTheory.Category.comp_id
hσ'_eq_zero 📖mathematicalComplexShape.Rel
c
hσ'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.zero_comp
hσ'_naturality 📖mathematicalComplexShape.Rel
c
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
CategoryTheory.NatTrans.app
hσ'
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.comp_id
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
CategoryTheory.Linear.comp_smul
CategoryTheory.Linear.smul_comp
CategoryTheory.SimplicialObject.σ_naturality
map_Hσ 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.SimplicialObject.whiskering

CategoryTheory.Functor.map
HomologicalComplex.X
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomologicalComplex.congr_hom
Homotopy.map_nullHomotopicMap'
CategoryTheory.Functor.congr_obj
AlgebraicTopology.map_alternatingFaceMapComplex
map_hσ' 📖mathematicalComplexShape.Rel
c
hσ'
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.SimplicialObject.whiskering
CategoryTheory.Functor.map
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.zero_comp
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.map_zsmul
CategoryTheory.eqToHom_map

---

← Back to Index