Documentation Verification Report

NCompGamma

📁 Source: Mathlib/AlgebraicTopology/DoldKan/NCompGamma.lean

Statistics

MetricCount
DefinitionsΓ₂N₁, natTrans, Γ₂N₂, natTrans, Γ₂N₂ToKaroubiIso
5
TheoremsPInfty_comp_map_mono_eq_zero, compatibility_Γ₂N₁_Γ₂N₂_natTrans, identity_N₂, identity_N₂_objectwise, instIsIsoFunctorKaroubiSimplicialObjectNatTrans, instIsIsoFunctorSimplicialObjectKaroubiNatTrans, Γ₀_obj_termwise_mapMono_comp_PInfty, Γ₀_obj_termwise_mapMono_comp_PInfty_assoc, natTrans_app_f_app, Γ₂N₁_inv, natTrans_app_f_app, Γ₂N₂ToKaroubiIso_hom_app, Γ₂N₂ToKaroubiIso_inv_app, Γ₂N₂_inv
14
Total19

AlgebraicTopology.DoldKan

Definitions

NameCategoryTheorems
Γ₂N₁ 📖CompOp
2 mathmath: CategoryTheory.Idempotents.DoldKan.hε, Γ₂N₁_inv
Γ₂N₂ 📖CompOp
2 mathmath: CategoryTheory.Preadditive.DoldKan.equivalence_unitIso, Γ₂N₂_inv
Γ₂N₂ToKaroubiIso 📖CompOp
4 mathmath: compatibility_Γ₂N₁_Γ₂N₂_natTrans, Γ₂N₂ToKaroubiIso_hom_app, Γ₂N₂ToKaroubiIso_inv_app, Γ₂N₂.natTrans_app_f_app

Theorems

NameKindAssumesProvesValidatesDepends On
PInfty_comp_map_mono_eq_zero 📖mathematicalIsδ₀CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
HomologicalComplex.Hom.f
PInfty
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
Quiver.Hom
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
SimplexCategory.len_lt_of_mono
SimplexCategory.eq_δ_of_mono
SimplexCategory.instMonoδ
Isδ₀.iff
HigherFacesVanish.comp_δ_eq_zero
HigherFacesVanish.of_P
SimplexCategory.eq_comp_δ_of_not_surjective
SimplexCategory.epi_iff_surjective
CategoryTheory.Category.assoc
Fin.le_iff_val_le_val
SimplexCategory.δ_comp_δ''
CategoryTheory.Functor.map_comp
HigherFacesVanish.comp_δ_eq_zero_assoc
CategoryTheory.Limits.zero_comp
compatibility_Γ₂N₁_Γ₂N₂_natTrans 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
N₁
Γ₂
CategoryTheory.Idempotents.toKaroubi
Γ₂N₁.natTrans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
N₂
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Iso.app
Γ₂N₂ToKaroubiIso
Γ₂N₂.natTrans
AddRightCancelSemigroup.toIsRightCancelAdd
Γ₂N₂.natTrans_app_f_app
CategoryTheory.Functor.map_id
CategoryTheory.Iso.app_inv
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_app_assoc
identity_N₂ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Idempotents.Karoubi
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi.instCategory
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
N₂
CategoryTheory.Functor.id
Γ₂
CategoryTheory.NatTrans.hcomp
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv
N₂Γ₂
CategoryTheory.Functor.associator
Γ₂N₂.natTrans
CategoryTheory.NatTrans.ext'
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
identity_N₂_objectwise
identity_N₂_objectwise 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Idempotents.Karoubi
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
N₂
CategoryTheory.Functor.comp
Γ₂
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
N₂Γ₂
CategoryTheory.Functor.map
Γ₂N₂.natTrans
CategoryTheory.CategoryStruct.id
CategoryTheory.Idempotents.Karoubi.hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.hom_ext
N₂Γ₂_inv_app_f_f
CategoryTheory.Category.assoc
PInfty_on_Γ₀_splitting_summand_eq_self_assoc
Γ₂N₂.natTrans_app_f_app
Γ₂N₂ToKaroubiIso_hom_app
SimplicialObject.Splitting.ι_desc_assoc
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
PInfty_f_idem_assoc
PInfty_f_naturality_assoc
CategoryTheory.Idempotents.app_idem
instIsIsoFunctorKaroubiSimplicialObjectNatTrans 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Idempotents.Karoubi
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
N₂
Γ₂
CategoryTheory.Functor.id
Γ₂N₂.natTrans
AddRightCancelSemigroup.toIsRightCancelAdd
identity_N₂_objectwise
CategoryTheory.NatIso.inv_app_isIso
CategoryTheory.hom_comp_eq_id
CategoryTheory.IsIso.inv_isIso
CategoryTheory.isIso_of_reflects_iso
instReflectsIsomorphismsKaroubiSimplicialObjectChainComplexNatN₂
CategoryTheory.NatIso.isIso_of_isIso_app
instIsIsoFunctorSimplicialObjectKaroubiNatTrans 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
N₁
Γ₂
CategoryTheory.Idempotents.toKaroubi
Γ₂N₁.natTrans
AddRightCancelSemigroup.toIsRightCancelAdd
compatibility_Γ₂N₁_Γ₂N₂_natTrans
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.NatIso.isIso_app_of_isIso
instIsIsoFunctorKaroubiSimplicialObjectNatTrans
CategoryTheory.NatIso.isIso_of_isIso_app
Γ₀_obj_termwise_mapMono_comp_PInfty 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
SimplexCategory.len
Γ₀.Obj.Termwise.mapMono
HomologicalComplex.Hom.f
PInfty
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
AddRightCancelSemigroup.toIsRightCancelAdd
SimplexCategory.eq_id_of_mono
Γ₀.Obj.Termwise.mapMono.congr_simp
Γ₀.Obj.Termwise.mapMono_id
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
Γ₀.Obj.Termwise.mapMono_δ₀'
HomologicalComplex.Hom.comm
AlgebraicTopology.AlternatingFaceMapComplex.obj_d_eq
CategoryTheory.Preadditive.comp_sum
Finset.sum_eq_single
CategoryTheory.Preadditive.comp_zsmul
CategoryTheory.SimplicialObject.δ.eq_1
PInfty_comp_map_mono_eq_zero
SimplexCategory.instMonoδ
Isδ₀.iff
zsmul_zero
instIsEmptyFalse
pow_zero
one_zsmul
Isδ₀.eq_δ₀
Γ₀.Obj.Termwise.mapMono_eq_zero
CategoryTheory.Limits.zero_comp
Γ₀_obj_termwise_mapMono_comp_PInfty_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
SimplexCategory.len
Γ₀.Obj.Termwise.mapMono
HomologicalComplex.Hom.f
PInfty
CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
Γ₀_obj_termwise_mapMono_comp_PInfty
Γ₂N₁_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.category
CategoryTheory.Idempotents.toKaroubi
CategoryTheory.Functor.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
N₁
Γ₂
Γ₂N₁
Γ₂N₁.natTrans
AddRightCancelSemigroup.toIsRightCancelAdd
Γ₂N₂ToKaroubiIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.comp
CategoryTheory.Idempotents.toKaroubi
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
N₂
Γ₂
N₁
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
AddRightCancelSemigroup.toIsRightCancelAdd
Γ₂N₂ToKaroubiIso
CategoryTheory.Functor.map
CategoryTheory.Functor.obj
toKaroubiCompN₂IsoN₁
CategoryTheory.Category.id_comp
Γ₂N₂ToKaroubiIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
N₁
Γ₂
CategoryTheory.Idempotents.toKaroubi
N₂
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
AddRightCancelSemigroup.toIsRightCancelAdd
Γ₂N₂ToKaroubiIso
CategoryTheory.Functor.map
CategoryTheory.Functor.obj
toKaroubiCompN₂IsoN₁
CategoryTheory.Category.comp_id
Γ₂N₂_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Idempotents.Karoubi
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
N₂
Γ₂
Γ₂N₂
Γ₂N₂.natTrans
AddRightCancelSemigroup.toIsRightCancelAdd

AlgebraicTopology.DoldKan.Γ₂N₁

Definitions

NameCategoryTheorems
natTrans 📖CompOp
5 mathmath: AlgebraicTopology.DoldKan.instIsIsoFunctorSimplicialObjectKaroubiNatTrans, AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans, natTrans_app_f_app, AlgebraicTopology.DoldKan.Γ₂N₁_inv, AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app

Theorems

NameKindAssumesProvesValidatesDepends On
natTrans_app_f_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Idempotents.Karoubi.X
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AlgebraicTopology.DoldKan.N₁
AlgebraicTopology.DoldKan.Γ₂
CategoryTheory.Idempotents.toKaroubi
CategoryTheory.Idempotents.Karoubi.Hom.f
AddRightCancelSemigroup.toIsRightCancelAdd
natTrans
SimplicialObject.Splitting.desc
AlgebraicTopology.DoldKan.Γ₀.obj
AlgebraicTopology.AlternatingFaceMapComplex.obj
AlgebraicTopology.DoldKan.Γ₀.splitting
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.N
SimplexCategory.len
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
HomologicalComplex.X
HomologicalComplex.Hom.f
AlgebraicTopology.DoldKan.PInfty
CategoryTheory.Functor.map
Opposite.op
Quiver.Hom.op
SimplicialObject.Splitting.IndexSet.e
AddRightCancelSemigroup.toIsRightCancelAdd

AlgebraicTopology.DoldKan.Γ₂N₂

Definitions

NameCategoryTheorems
natTrans 📖CompOp
6 mathmath: AlgebraicTopology.DoldKan.identity_N₂, AlgebraicTopology.DoldKan.instIsIsoFunctorKaroubiSimplicialObjectNatTrans, AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans, AlgebraicTopology.DoldKan.identity_N₂_objectwise, AlgebraicTopology.DoldKan.Γ₂N₂_inv, natTrans_app_f_app

Theorems

NameKindAssumesProvesValidatesDepends On
natTrans_app_f_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Idempotents.Karoubi
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Functor.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
AlgebraicTopology.DoldKan.N₂
AlgebraicTopology.DoldKan.Γ₂
CategoryTheory.Functor.id
natTrans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi.X
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map
CategoryTheory.Idempotents.Karoubi.decompId_i
CategoryTheory.Idempotents.toKaroubi
CategoryTheory.Functor
CategoryTheory.Functor.category
AlgebraicTopology.DoldKan.N₁
CategoryTheory.Iso.hom
AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso
AlgebraicTopology.DoldKan.Γ₂N₁.natTrans
CategoryTheory.Idempotents.Karoubi.decompId_p
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.whiskeringLeft_obj_preimage_app
CategoryTheory.Idempotents.instIsIdempotentCompleteKaroubi

---

← Back to Index