Documentation Verification Report

NReflectsIso

📁 Source: Mathlib/AlgebraicTopology/DoldKan/NReflectsIso.lean

Statistics

MetricCount
Definitions0
Theoremscompatibility_N₂_N₁_karoubi, instReflectsIsomorphismsKaroubiSimplicialObjectChainComplexNatN₂, instReflectsIsomorphismsSimplicialObjectKaroubiChainComplexNatN₁
3
Total3

AlgebraicTopology.DoldKan

Theorems

NameKindAssumesProvesValidatesDepends On
compatibility_N₂_N₁_karoubi 📖mathematical—CategoryTheory.Functor.comp
CategoryTheory.Idempotents.Karoubi
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi.instCategory
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.instPreadditiveKaroubi
N₂
CategoryTheory.Equivalence.functor
CategoryTheory.Idempotents.karoubiChainComplexEquivalence
CategoryTheory.Functor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.category
HomologicalComplex
CategoryTheory.Idempotents.karoubiFunctorCategoryEmbedding
N₁
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Equivalence.inverse
CategoryTheory.Idempotents.KaroubiKaroubi.equivalence
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.additive_inverse
—CategoryTheory.Functor.ext
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.additive_inverse
HomologicalComplex.ext
CategoryTheory.Idempotents.Karoubi.ext
CategoryTheory.Category.comp_id
karoubi_PInfty_f
PInfty_f_naturality
CategoryTheory.Category.id_comp
CategoryTheory.Idempotents.Karoubi.hom_ext
HomologicalComplex.Hom.comm
CategoryTheory.Category.assoc
CategoryTheory.Idempotents.Karoubi.eqToHom_f
AlgebraicTopology.karoubi_alternatingFaceMapComplex_d
CategoryTheory.Idempotents.app_idem_assoc
HomologicalComplex.hom_ext
HomologicalComplex.eqToHom_f
CategoryTheory.Idempotents.app_p_comp
PInfty_f_naturality_assoc
CategoryTheory.Idempotents.app_comp_p
PInfty_f_idem_assoc
instReflectsIsomorphismsKaroubiSimplicialObjectChainComplexNatN₂ 📖mathematical—CategoryTheory.Functor.ReflectsIsomorphisms
CategoryTheory.Idempotents.Karoubi
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi.instCategory
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
N₂
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.additive_inverse
compatibility_N₂_N₁_karoubi
CategoryTheory.Functor.comp_map
CategoryTheory.Functor.map_isIso
CategoryTheory.isIso_of_reflects_iso
CategoryTheory.reflectsIsomorphisms_comp
CategoryTheory.reflectsIsomorphisms_of_full_and_faithful
CategoryTheory.Idempotents.instFullKaroubiFunctorKaroubiFunctorCategoryEmbedding
CategoryTheory.Idempotents.instFaithfulKaroubiFunctorKaroubiFunctorCategoryEmbedding
instReflectsIsomorphismsSimplicialObjectKaroubiChainComplexNatN₁
CategoryTheory.Equivalence.full_functor
CategoryTheory.Equivalence.faithful_functor
CategoryTheory.Functor.mapHomologicalComplex_reflects_iso
CategoryTheory.Equivalence.full_inverse
CategoryTheory.Equivalence.faithful_inverse
instReflectsIsomorphismsSimplicialObjectKaroubiChainComplexNatN₁ 📖mathematical—CategoryTheory.Functor.ReflectsIsomorphisms
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Idempotents.Karoubi.instCategory
N₁
—AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.congr_hom
CategoryTheory.Idempotents.Karoubi.hom_ext_iff
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f_assoc
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
PInfty_f_naturality_assoc
CategoryTheory.IsIso.hom_inv_id_assoc
CategoryTheory.SimplicialObject.σ_naturality
CategoryTheory.IsIso.inv_hom_id_assoc
CategoryTheory.NatIso.isIso_of_isIso_app

---

← Back to Index