Documentation Verification Report

Projections

📁 Source: Mathlib/AlgebraicTopology/DoldKan/Projections.lean

Statistics

MetricCount
DefinitionsP, Q, natTransP, natTransQ
4
Theoremscomp_P_eq_self, comp_P_eq_self_assoc, of_P, P_add_Q, P_add_Q_f, P_f_0_eq, P_f_idem, P_f_idem_assoc, P_f_naturality, P_f_naturality_assoc, P_idem, P_idem_assoc, P_succ, P_zero, Q_f_0_eq, Q_f_idem, Q_f_idem_assoc, Q_f_naturality, Q_f_naturality_assoc, Q_idem, Q_idem_assoc, Q_succ, Q_zero, comp_P_eq_self_iff, map_P, map_Q, natTransP_app, natTransQ_app
28
Total32

AlgebraicTopology.DoldKan

Definitions

NameCategoryTheorems
P 📖CompOp
24 mathmath: P_f_0_eq, HigherFacesVanish.of_P, homotopyPInftyToId_hom, comp_P_eq_self_iff, P_f_idem_assoc, P_f_idem, P_succ, PInfty_f, P_f_naturality_assoc, map_P, P_idem, natTransP_app, HigherFacesVanish.comp_P_eq_self_assoc, HigherFacesVanish.comp_P_eq_self, Q_succ, P_add_Q, P_is_eventually_constant, P_zero, homotopyPToId_eventually_constant, decomposition_Q, σ_comp_P_eq_zero, P_idem_assoc, P_f_naturality, P_add_Q_f
Q 📖CompOp
16 mathmath: QInfty_f, Q_idem, Q_idem_assoc, Q_f_0_eq, Q_is_eventually_constant, Q_f_naturality_assoc, Q_succ, P_add_Q, map_Q, decomposition_Q, Q_f_idem_assoc, Q_f_naturality, Q_zero, P_add_Q_f, natTransQ_app, Q_f_idem
natTransP 📖CompOp
1 mathmath: natTransP_app
natTransQ 📖CompOp
1 mathmath: natTransQ_app

Theorems

NameKindAssumesProvesValidatesDepends On
P_add_Q 📖mathematicalQuiver.Hom
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.instAddHom
P
Q
CategoryTheory.CategoryStruct.id
AddRightCancelSemigroup.toIsRightCancelAdd
Q.eq_1
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.const_add_termg
add_zero
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isInt_neg
zero_add
Mathlib.Tactic.Abel.zero_termg
P_add_Q_f 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
HomologicalComplex.Hom.f
P
Q
CategoryTheory.CategoryStruct.id
HomologicalComplex.congr_hom
AddRightCancelSemigroup.toIsRightCancelAdd
P_add_Q
P_f_0_eq 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
P
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
AddRightCancelSemigroup.toIsRightCancelAdd
Hσ_eq_zero
add_zero
CategoryTheory.Category.id_comp
P_f_idem 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
P
AddRightCancelSemigroup.toIsRightCancelAdd
P_f_0_eq
CategoryTheory.Category.comp_id
HigherFacesVanish.comp_P_eq_self
HigherFacesVanish.of_P
P_f_idem_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
P
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
P_f_idem
P_f_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
CategoryTheory.NatTrans.app
HomologicalComplex.Hom.f
P
HomologicalComplex.congr_hom
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.NatTrans.naturality
P_f_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.NatTrans.app
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
P
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
P_f_naturality
P_idem 📖mathematicalCategoryTheory.CategoryStruct.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
AlgebraicTopology.AlternatingFaceMapComplex.obj
P
HomologicalComplex.hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
P_f_idem
P_idem_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
AlgebraicTopology.AlternatingFaceMapComplex.obj
P
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
P_idem
P_succ 📖mathematicalP
CategoryTheory.CategoryStruct.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
AlgebraicTopology.AlternatingFaceMapComplex.obj
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instAddHom
CategoryTheory.CategoryStruct.id
AddRightCancelSemigroup.toIsRightCancelAdd
P_zero 📖mathematicalP
CategoryTheory.CategoryStruct.id
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
AlgebraicTopology.AlternatingFaceMapComplex.obj
AddRightCancelSemigroup.toIsRightCancelAdd
Q_f_0_eq 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
Q
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
P_f_0_eq
sub_self
Q_f_idem 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
Q
CategoryTheory.Idempotents.idem_of_id_sub_idem
AddRightCancelSemigroup.toIsRightCancelAdd
P_f_idem
Q_f_idem_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
Q
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
Q_f_idem
Q_f_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
CategoryTheory.NatTrans.app
HomologicalComplex.Hom.f
Q
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Preadditive.comp_sub
P_f_naturality
CategoryTheory.Preadditive.sub_comp
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
Q_f_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.NatTrans.app
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
Q
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
Q_f_naturality
Q_idem 📖mathematicalCategoryTheory.CategoryStruct.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
AlgebraicTopology.AlternatingFaceMapComplex.obj
Q
HomologicalComplex.hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
Q_f_idem
Q_idem_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
AlgebraicTopology.AlternatingFaceMapComplex.obj
Q
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
Q_idem
Q_succ 📖mathematicalQ
Quiver.Hom
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.instSubHom
CategoryTheory.CategoryStruct.comp
P
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Preadditive.comp_add
CategoryTheory.Category.comp_id
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.term_neg
neg_zero
Q_zero 📖mathematicalQ
Quiver.Hom
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.instZeroHom_1
sub_self
AddRightCancelSemigroup.toIsRightCancelAdd
comp_P_eq_self_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
P
HigherFacesVanish
AddRightCancelSemigroup.toIsRightCancelAdd
HigherFacesVanish.of_comp
HigherFacesVanish.of_P
HigherFacesVanish.comp_P_eq_self
map_P 📖mathematicalCategoryTheory.Functor.map
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
P
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.SimplicialObject.whiskering
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.map_id
CategoryTheory.Preadditive.comp_add
CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_add
CategoryTheory.Functor.map_comp
map_Hσ
map_Q 📖mathematicalCategoryTheory.Functor.map
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
Q
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.SimplicialObject.whiskering
AddRightCancelSemigroup.toIsRightCancelAdd
AddLeftCancelSemigroup.toIsLeftCancelAdd
CategoryTheory.Functor.map_add
map_P
P_add_Q_f
CategoryTheory.Functor.map_id
natTransP_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
AlgebraicTopology.alternatingFaceMapComplex
natTransP
P
AddRightCancelSemigroup.toIsRightCancelAdd
natTransQ_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
AlgebraicTopology.alternatingFaceMapComplex
natTransQ
Q
AddRightCancelSemigroup.toIsRightCancelAdd

AlgebraicTopology.DoldKan.HigherFacesVanish

Theorems

NameKindAssumesProvesValidatesDepends On
comp_P_eq_self 📖mathematicalAlgebraicTopology.DoldKan.HigherFacesVanishCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
AlgebraicTopology.DoldKan.P
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.comp_id
CategoryTheory.Preadditive.comp_add
of_succ
AddLeftCancelSemigroup.toIsLeftCancelAdd
comp_Hσ_eq_zero
comp_Hσ_eq
add_assoc
le_refl
CategoryTheory.Limits.zero_comp
comp_P_eq_self_assoc 📖mathematicalAlgebraicTopology.DoldKan.HigherFacesVanishCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
AlgebraicTopology.DoldKan.P
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_P_eq_self
of_P 📖mathematicalAlgebraicTopology.DoldKan.HigherFacesVanish
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
AlgebraicTopology.DoldKan.P
AddRightCancelSemigroup.toIsRightCancelAdd
induction

---

← Back to Index