| Name | Category | Theorems |
d đ | CompOp | 1 mathmath: nondegComplex_d
|
nondegComplex đ | CompOp | 15 mathmath: AlgebraicTopology.DoldKan.ÎâNondegComplexIso_inv_f, nondegComplex_d, AlgebraicTopology.DoldKan.ÎâNondegComplexIso_hom_f, AlgebraicTopology.DoldKan.NâÎâ_hom_app_f_f, toKaroubiNondegComplexIsoNâ_inv_f_f, nondegComplex_X, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoNâ_hom_app_f_f, SimplicialObject.Split.nondegComplexFunctor_map_f, SimplicialObject.Split.nondegComplexFunctor_obj, AlgebraicTopology.DoldKan.NâÎâ_hom_app, AlgebraicTopology.DoldKan.NâÎâ_inv_app, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoNâ_inv_app_f_f, AlgebraicTopology.DoldKan.NâÎâ_inv_app_f_f, toKaroubiNondegComplexIsoNâ_hom_f_f, AlgebraicTopology.DoldKan.NâÎâ_app
|
toKaroubiNondegComplexIsoNâ đ | CompOp | 7 mathmath: AlgebraicTopology.DoldKan.NâÎâ_hom_app_f_f, toKaroubiNondegComplexIsoNâ_inv_f_f, AlgebraicTopology.DoldKan.NâÎâ_hom_app, AlgebraicTopology.DoldKan.NâÎâ_inv_app, AlgebraicTopology.DoldKan.NâÎâ_inv_app_f_f, toKaroubiNondegComplexIsoNâ_hom_f_f, AlgebraicTopology.DoldKan.NâÎâ_app
|
ĎSummand đ | CompOp | 15 mathmath: cofan_inj_ĎSummand_eq_id_assoc, PInfty_comp_ĎSummand_id, ΚSummand_comp_d_comp_ĎSummand_eq_zero, toKaroubiNondegComplexIsoNâ_inv_f_f, ĎSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty, cofan_inj_ĎSummand_eq_id, cofan_inj_ĎSummand_eq_zero, Ď_comp_ĎSummand_id_eq_zero_assoc, PInfty_comp_ĎSummand_id_assoc, decomposition_id, ĎSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty_assoc, cofan_inj_ĎSummand_eq_zero_assoc, comp_PInfty_eq_zero_iff, Ď_comp_ĎSummand_id_eq_zero, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoNâ_inv_app_f_f
|