Documentation Verification Report

SplitSimplicialObject

📁 Source: Mathlib/AlgebraicTopology/DoldKan/SplitSimplicialObject.lean

Statistics

MetricCount
DefinitionsnondegComplexFunctor, toKaroubiNondegComplexFunctorIsoN₁, d, nondegComplex, toKaroubiNondegComplexIsoN₁, πSummand
6
TheoremsnondegComplexFunctor_map_f, nondegComplexFunctor_obj, toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f, PInfty_comp_πSummand_id, PInfty_comp_πSummand_id_assoc, cofan_inj_comp_PInfty_eq_zero, cofan_inj_πSummand_eq_id, cofan_inj_πSummand_eq_id_assoc, cofan_inj_πSummand_eq_zero, cofan_inj_πSummand_eq_zero_assoc, comp_PInfty_eq_zero_iff, decomposition_id, nondegComplex_X, nondegComplex_d, toKaroubiNondegComplexIsoN₁_hom_f_f, toKaroubiNondegComplexIsoN₁_inv_f_f, ιSummand_comp_d_comp_πSummand_eq_zero, πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty, πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty_assoc, σ_comp_πSummand_id_eq_zero, σ_comp_πSummand_id_eq_zero_assoc
22
Total28

SimplicialObject.Split

Definitions

NameCategoryTheorems
nondegComplexFunctor 📖CompOp
4 mathmath: toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, nondegComplexFunctor_map_f, nondegComplexFunctor_obj, toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f
toKaroubiNondegComplexFunctorIsoN₁ 📖CompOp
2 mathmath: toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f

Theorems

NameKindAssumesProvesValidatesDepends On
nondegComplexFunctor_map_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
SimplicialObject.Splitting.nondegComplex
X
s
CategoryTheory.Functor.map
SimplicialObject.Split
SimplicialObject.instCategorySplit
ChainComplex
HomologicalComplex.instCategory
AddRightCancelSemigroup.toIsRightCancelAdd
nondegComplexFunctor
Hom.f
—AddRightCancelSemigroup.toIsRightCancelAdd
nondegComplexFunctor_obj 📖mathematical—CategoryTheory.Functor.obj
SimplicialObject.Split
SimplicialObject.instCategorySplit
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
nondegComplexFunctor
SimplicialObject.Splitting.nondegComplex
X
s
—AddRightCancelSemigroup.toIsRightCancelAdd
toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Idempotents.Karoubi.X
ChainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Idempotents.toKaroubi
SimplicialObject.Splitting.nondegComplex
X
s
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
AlgebraicTopology.DoldKan.N₁
CategoryTheory.Idempotents.Karoubi.Hom.f
SimplicialObject.Split
SimplicialObject.instCategorySplit
CategoryTheory.Functor.comp
nondegComplexFunctor
forget
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.category
toKaroubiNondegComplexFunctorIsoN₁
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.N
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
SimplicialObject.Splitting.IndexSet
Opposite.op
SimplexCategory
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.cofan
Opposite
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
SimplicialObject.Splitting.IndexSet.id
AlgebraicTopology.AlternatingFaceMapComplex.obj
AlgebraicTopology.DoldKan.PInfty
—AddRightCancelSemigroup.toIsRightCancelAdd
toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Idempotents.Karoubi.X
ChainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
AlgebraicTopology.DoldKan.N₁
X
CategoryTheory.Idempotents.toKaroubi
SimplicialObject.Splitting.nondegComplex
s
CategoryTheory.Idempotents.Karoubi.Hom.f
SimplicialObject.Split
SimplicialObject.instCategorySplit
CategoryTheory.Functor.comp
forget
nondegComplexFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.category
toKaroubiNondegComplexFunctorIsoN₁
SimplicialObject.Splitting.πSummand
Opposite.op
SimplexCategory
SimplicialObject.Splitting.IndexSet.id
—AddRightCancelSemigroup.toIsRightCancelAdd

SimplicialObject.Splitting

Definitions

NameCategoryTheorems
d 📖CompOp
1 mathmath: nondegComplex_d
nondegComplex 📖CompOp
15 mathmath: AlgebraicTopology.DoldKan.Γ₀NondegComplexIso_inv_f, nondegComplex_d, AlgebraicTopology.DoldKan.Γ₀NondegComplexIso_hom_f, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app_f_f, toKaroubiNondegComplexIsoN₁_inv_f_f, nondegComplex_X, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, SimplicialObject.Split.nondegComplexFunctor_map_f, SimplicialObject.Split.nondegComplexFunctor_obj, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app_f_f, toKaroubiNondegComplexIsoN₁_hom_f_f, AlgebraicTopology.DoldKan.N₁Γ₀_app
toKaroubiNondegComplexIsoN₁ 📖CompOp
7 mathmath: AlgebraicTopology.DoldKan.N₁Γ₀_hom_app_f_f, toKaroubiNondegComplexIsoN₁_inv_f_f, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app_f_f, toKaroubiNondegComplexIsoN₁_hom_f_f, AlgebraicTopology.DoldKan.N₁Γ₀_app
πSummand 📖CompOp
15 mathmath: cofan_inj_πSummand_eq_id_assoc, PInfty_comp_πSummand_id, ιSummand_comp_d_comp_πSummand_eq_zero, toKaroubiNondegComplexIsoN₁_inv_f_f, πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty, cofan_inj_πSummand_eq_id, cofan_inj_πSummand_eq_zero, σ_comp_πSummand_id_eq_zero_assoc, PInfty_comp_πSummand_id_assoc, decomposition_id, πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty_assoc, cofan_inj_πSummand_eq_zero_assoc, comp_PInfty_eq_zero_iff, σ_comp_πSummand_id_eq_zero, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f

Theorems

NameKindAssumesProvesValidatesDepends On
PInfty_comp_πSummand_id 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
N
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.Epi
IndexSet.id
HomologicalComplex.Hom.f
AlgebraicTopology.DoldKan.PInfty
πSummand
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.id_comp
sub_eq_zero
CategoryTheory.Preadditive.sub_comp
comp_PInfty_eq_zero_iff
AlgebraicTopology.DoldKan.PInfty_f_idem
sub_self
PInfty_comp_πSummand_id_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
AlgebraicTopology.DoldKan.PInfty
N
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
SimplexCategory.smallCategory
CategoryTheory.Epi
IndexSet.id
Opposite.op
πSummand
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
PInfty_comp_πSummand_id
cofan_inj_comp_PInfty_eq_zero 📖mathematicalIndexSet.EqId
Opposite.op
SimplexCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
summand
N
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
cofan
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
AlgebraicTopology.DoldKan.PInfty
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—AddRightCancelSemigroup.toIsRightCancelAdd
cofan_inj_eq
CategoryTheory.Category.assoc
AlgebraicTopology.DoldKan.degeneracy_comp_PInfty
IndexSet.eqId_iff_mono
CategoryTheory.Limits.comp_zero
cofan_inj_πSummand_eq_id 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
summand
N
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
cofan
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
SimplexCategory.smallCategory
CategoryTheory.Epi
πSummand
CategoryTheory.CategoryStruct.id
—ι_desc
cofan_inj_πSummand_eq_id_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
summand
N
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
cofan
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
SimplexCategory.smallCategory
CategoryTheory.Epi
πSummand
—CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
cofan_inj_πSummand_eq_id
cofan_inj_πSummand_eq_zero 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
summand
N
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
cofan
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
SimplexCategory.smallCategory
CategoryTheory.Epi
πSummand
CategoryTheory.Limits.HasZeroMorphisms.zero
—ι_desc
cofan_inj_πSummand_eq_zero_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
summand
N
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
cofan
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
SimplexCategory.smallCategory
CategoryTheory.Epi
πSummand
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cofan_inj_πSummand_eq_zero
comp_PInfty_eq_zero_iff 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
AlgebraicTopology.DoldKan.PInfty
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
N
SimplexCategory.len
Opposite.unop
CategoryTheory.Epi
IndexSet.id
πSummand
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.comp_id
CategoryTheory.Limits.zero_comp
CategoryTheory.whisker_eq
AlgebraicTopology.DoldKan.PInfty_f_add_QInfty_f
zero_add
CategoryTheory.Preadditive.comp_add
CategoryTheory.Category.assoc
AlgebraicTopology.DoldKan.QInfty_f
AlgebraicTopology.DoldKan.decomposition_Q
CategoryTheory.Preadditive.sum_comp
CategoryTheory.Preadditive.comp_sum
Finset.sum_eq_zero
σ_comp_πSummand_id_eq_zero
CategoryTheory.Limits.comp_zero
decomposition_id
Fintype.sum_eq_zero
Mathlib.Tactic.Reassoc.eq_whisker'
cofan_inj_comp_PInfty_eq_zero
decomposition_id 📖mathematical—CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Finset.sum
IndexSet
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
summand
N
cofan
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Finset.univ
IndexSet.instFintype
CategoryTheory.CategoryStruct.comp
SimplexCategory.len
Opposite.unop
CategoryTheory.Epi
πSummand
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
—hom_ext'
CategoryTheory.Category.comp_id
CategoryTheory.Preadditive.comp_sum
Finset.sum_eq_single
cofan_inj_πSummand_eq_zero_assoc
CategoryTheory.Limits.zero_comp
cofan_inj_πSummand_eq_id_assoc
instIsEmptyFalse
nondegComplex_X 📖mathematical—HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
nondegComplex
N
—AddRightCancelSemigroup.toIsRightCancelAdd
nondegComplex_d 📖mathematical—HomologicalComplex.d
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
nondegComplex
d
—AddRightCancelSemigroup.toIsRightCancelAdd
toKaroubiNondegComplexIsoN₁_hom_f_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Idempotents.Karoubi.X
ChainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Idempotents.toKaroubi
nondegComplex
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
AlgebraicTopology.DoldKan.N₁
CategoryTheory.Idempotents.Karoubi.Hom.f
CategoryTheory.Iso.hom
AddRightCancelSemigroup.toIsRightCancelAdd
toKaroubiNondegComplexIsoN₁
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
IndexSet
Opposite.op
SimplexCategory
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
summand
N
cofan
IndexSet.id
AlgebraicTopology.AlternatingFaceMapComplex.obj
AlgebraicTopology.DoldKan.PInfty
—AddRightCancelSemigroup.toIsRightCancelAdd
toKaroubiNondegComplexIsoN₁_inv_f_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Idempotents.Karoubi.X
ChainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
AlgebraicTopology.DoldKan.N₁
CategoryTheory.Idempotents.toKaroubi
nondegComplex
CategoryTheory.Idempotents.Karoubi.Hom.f
CategoryTheory.Iso.inv
AddRightCancelSemigroup.toIsRightCancelAdd
toKaroubiNondegComplexIsoN₁
πSummand
Opposite.op
SimplexCategory
IndexSet.id
—AddRightCancelSemigroup.toIsRightCancelAdd
ιSummand_comp_d_comp_πSummand_eq_zero 📖mathematicalIndexSet.EqId
Opposite.op
SimplexCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
summand
N
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
cofan
SimplexCategory.len
Opposite.unop
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
SimplexCategory.smallCategory
CategoryTheory.Epi
IndexSet.id
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.d
πSummand
CategoryTheory.Limits.HasZeroMorphisms.zero
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
comp_PInfty_eq_zero_iff
HomologicalComplex.Hom.comm
cofan_inj_eq
AlgebraicTopology.DoldKan.degeneracy_comp_PInfty_assoc
IndexSet.eqId_iff_mono
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
N
SimplexCategory.len
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
IndexSet.id
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
πSummand
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
summand
cofan
HomologicalComplex.Hom.f
AlgebraicTopology.DoldKan.PInfty
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.id_comp
decomposition_id
CategoryTheory.Preadditive.sum_comp
Fintype.sum_eq_single
CategoryTheory.Category.assoc
cofan_inj_comp_PInfty_eq_zero
CategoryTheory.Limits.comp_zero
πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
N
SimplexCategory.len
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
IndexSet.id
πSummand
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
summand
cofan
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
AlgebraicTopology.DoldKan.PInfty
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty
σ_comp_πSummand_id_eq_zero 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
N
SimplexCategory.len
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
IndexSet.id
CategoryTheory.SimplicialObject.σ
πSummand
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Limits.HasZeroMorphisms.zero
—hom_ext'
CategoryTheory.Limits.comp_zero
CategoryTheory.unop_epi_of_mono
CategoryTheory.op_mono_of_epi
SimplexCategory.instEpiσ
cofan_inj_epi_naturality_assoc
cofan_inj_πSummand_eq_zero
IndexSet.eqId_iff_len_eq
SimplexCategory.len_le_of_epi
IndexSet.instEpiSimplexCategoryE
σ_comp_πSummand_id_eq_zero_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.SimplicialObject.σ
N
SimplexCategory.len
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
IndexSet.id
πSummand
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
σ_comp_πSummand_id_eq_zero

---

← Back to Index