Documentation Verification Report

ExtraDegeneracy

šŸ“ Source: Mathlib/AlgebraicTopology/ExtraDegeneracy.lean

Statistics

MetricCount
Definitionss, extraDegeneracy, ExtraDegeneracy, const, homotopyEquiv, map, ofIso, s, s', extraDegeneracy, shift, shiftFun
12
Theoremss_comp_base, s_comp_Ļ€_0, s_comp_Ļ€_succ, const_s, const_s', ext, ext_iff, s'_comp_ε, s'_comp_ε_assoc, s_comp_Ī“, s_comp_Ī“_assoc, s_comp_Γ₀, s_comp_Γ₀_assoc, s_comp_σ, s_comp_σ_assoc, sā‚€_comp_Γ₁, sā‚€_comp_Γ₁_assoc, nonempty_extraDegeneracy_stdSimplex, shiftFun_succ, shiftFun_zero
20
Total32

CategoryTheory.Arrow.AugmentedCechNerve

Definitions

NameCategoryTheorems
extraDegeneracy šŸ“–CompOp—

CategoryTheory.Arrow.AugmentedCechNerve.ExtraDegeneracy

Definitions

NameCategoryTheorems
s šŸ“–CompOp
3 mathmath: s_comp_base, s_comp_Ļ€_0, s_comp_Ļ€_succ

Theorems

NameKindAssumesProvesValidatesDepends On
s_comp_base šŸ“–mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Arrow.cechNerve
Opposite.op
s
CategoryTheory.Limits.WidePullback.base
SimplexCategory.len
Opposite.unop
—CategoryTheory.Limits.WidePullback.lift_base
s_comp_Ļ€_0 šŸ“–mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Arrow.cechNerve
Opposite.op
s
CategoryTheory.Limits.WidePullback.Ļ€
SimplexCategory.len
Opposite.unop
SimplexCategory.instOfNatToTypeOrderHomFinHAddNatLenOfNat
CategoryTheory.Limits.widePullback
CategoryTheory.Limits.WidePullback.base
CategoryTheory.SplitEpi.section_
—CategoryTheory.Limits.limit.lift_Ļ€
s_comp_Ļ€_succ šŸ“–mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Arrow.cechNerve
Opposite.op
s
CategoryTheory.Limits.WidePullback.Ļ€
—CategoryTheory.Limits.limit.lift_Ļ€

CategoryTheory.SimplicialObject.Augmented

Definitions

NameCategoryTheorems
ExtraDegeneracy šŸ“–CompData
1 mathmath: SSet.Augmented.StandardSimplex.nonempty_extraDegeneracy_stdSimplex

CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy

Definitions

NameCategoryTheorems
const šŸ“–CompOp
2 mathmath: const_s', const_s
homotopyEquiv šŸ“–CompOp—
map šŸ“–CompOp—
ofIso šŸ“–CompOp—
s šŸ“–CompOp
10 mathmath: s_comp_Γ₀_assoc, s_comp_Ī“, ext_iff, sā‚€_comp_Γ₁_assoc, s_comp_σ, sā‚€_comp_Γ₁, s_comp_Ī“_assoc, s_comp_σ_assoc, s_comp_Γ₀, const_s
s' šŸ“–CompOp
6 mathmath: s'_comp_ε, const_s', ext_iff, sā‚€_comp_Γ₁_assoc, sā‚€_comp_Γ₁, s'_comp_ε_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
const_s šŸ“–mathematical—s
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.SimplicialObject.Augmented.const
const
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.Augmented.drop
Opposite.op
——
const_s' šŸ“–mathematical—s'
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.SimplicialObject.Augmented.const
const
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.SimplicialObject.Augmented.point
——
ext šŸ“–ā€”s'
s
———
ext_iff šŸ“–mathematical—s'
s
—ext
s'_comp_ε šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.SimplicialObject.Augmented.point
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.Augmented.drop
Opposite.op
CategoryTheory.SimplicialObject.const
CategoryTheory.Comma.right
CategoryTheory.Functor.id
s'
CategoryTheory.NatTrans.app
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.CategoryStruct.id
——
s'_comp_ε_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.SimplicialObject.Augmented.point
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.Augmented.drop
Opposite.op
s'
CategoryTheory.SimplicialObject.const
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
—CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
s'_comp_ε
s_comp_Ī“ šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.Augmented.drop
Opposite.op
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
s
CategoryTheory.SimplicialObject.Ī“
——
s_comp_Ī“_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.Augmented.drop
Opposite.op
s
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.SimplicialObject.Ī“
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
s_comp_Ī“
s_comp_Γ₀ šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.Augmented.drop
Opposite.op
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
s
CategoryTheory.SimplicialObject.Ī“
CategoryTheory.CategoryStruct.id
——
s_comp_Γ₀_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.Augmented.drop
Opposite.op
s
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.SimplicialObject.Ī“
—CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
s_comp_Γ₀
s_comp_σ šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.Augmented.drop
Opposite.op
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
s
CategoryTheory.SimplicialObject.σ
——
s_comp_σ_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.Augmented.drop
Opposite.op
s
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.SimplicialObject.σ
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
s_comp_σ
sā‚€_comp_Γ₁ šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.Augmented.drop
Opposite.op
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
s
CategoryTheory.SimplicialObject.Ī“
CategoryTheory.Comma.right
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
s'
——
sā‚€_comp_Γ₁_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.Augmented.drop
Opposite.op
s
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.SimplicialObject.Ī“
CategoryTheory.Comma.right
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
s'
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
sā‚€_comp_Γ₁

SSet.Augmented.StandardSimplex

Definitions

NameCategoryTheorems
extraDegeneracy šŸ“–CompOp—
shift šŸ“–CompOp—
shiftFun šŸ“–CompOp
2 mathmath: shiftFun_succ, shiftFun_zero

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_extraDegeneracy_stdSimplex šŸ“–mathematical—CategoryTheory.SimplicialObject.Augmented.ExtraDegeneracy
CategoryTheory.types
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
SSet.Augmented.stdSimplex
——
shiftFun_succ šŸ“–mathematical—shiftFun——
shiftFun_zero šŸ“–mathematical—shiftFun——

---

← Back to Index