Documentation Verification Report

Basic

πŸ“ Source: Mathlib/AlgebraicTopology/FundamentalGroupoid/Basic.lean

Statistics

MetricCount
DefinitionsFundamentalGroupoid, as, equiv, fromPath, fromTop, fundamentalGroupoidFunctor, instGroupoid, instInhabited, map, termΟ€, termΟ€β‚“, termΟ€β‚˜, toPath, toTop, reflSymmTrans, reflTrans, reflTransSymm, reflTransSymmAux, transAssoc, transAssocReparamAux, transRefl, transReflReparamAux
22
Theoremscomp_eq, conj_eqToHom, conj_eqToHom_assoc, eqToHom_eq, equiv_apply, equiv_symm_apply_as, ext, ext_iff, fromPath_eq_iff_homotopic, id_eq_path_refl, instIsEmpty, instNonempty, instSubsingleton, isEmpty_iff, map_comp, map_eq, map_id, map_map, map_obj_as, nonempty_iff, subsingleton_iff, refl_trans, symm_trans, trans_assoc, trans_refl, trans_symm, refl_trans, symm_trans, trans_assoc, trans_refl, trans_symm, continuous_reflTransSymmAux, continuous_transAssocReparamAux, continuous_transReflReparamAux, reflTransSymmAux_mem_I, transAssocReparamAux_mem_I, transAssocReparamAux_one, transAssocReparamAux_zero, transReflReparamAux_mem_I, transReflReparamAux_one, transReflReparamAux_zero, trans_assoc_reparam, trans_refl_reparam
43
Total65

FundamentalGroupoid

Definitions

NameCategoryTheorems
as πŸ“–CompOp
24 mathmath: eqToHom_eq, equiv_symm_apply_as, ContinuousMap.Homotopy.apply_zero_path, ContinuousMap.Homotopy.evalAt_eq, map_map, ContinuousMap.Homotopy.heq_path_of_eq_image, equiv_apply, ContinuousMap.Homotopy.eq_path_of_eq_image, FundamentalGroupoidFunctor.prodToProdTop_obj, FundamentalGroupoidFunctor.piToPiTop_map, ContinuousMap.Homotopy.apply_one_path, FundamentalGroupoidFunctor.projLeft_map, comp_eq, IsCoveringMap.monodromyFunctor_obj, FundamentalGroupoidFunctor.piToPiTop_obj_as, map_obj_as, FundamentalGroupoidFunctor.projRight_map, IsCoveringMap.monodromyFunctor_map, conj_eqToHom, id_eq_path_refl, ext_iff, FundamentalGroupoidFunctor.prodToProdTop_map, FundamentalGroupoidFunctor.proj_map, ContinuousMap.Homotopy.eq_diag_path
equiv πŸ“–CompOp
2 mathmath: equiv_symm_apply_as, equiv_apply
fromPath πŸ“–CompOp
1 mathmath: fromPath_eq_iff_homotopic
fromTop πŸ“–CompOp
5 mathmath: ContinuousMap.Homotopy.apply_zero_path, ContinuousMap.Homotopy.evalAt_eq, ContinuousMap.Homotopy.eq_path_of_eq_image, ContinuousMap.Homotopy.apply_one_path, ContinuousMap.Homotopy.eq_diag_path
fundamentalGroupoidFunctor πŸ“–CompOp
21 mathmath: FundamentalGroupoidFunctor.piIso_hom, ContinuousMap.Homotopy.apply_zero_path, ContinuousMap.Homotopy.evalAt_eq, ContinuousMap.Homotopy.heq_path_of_eq_image, ContinuousMap.Homotopy.eq_path_of_eq_image, FundamentalGroupoidFunctor.prodToProdTop_obj, FundamentalGroupoidFunctor.prodIso_hom, FundamentalGroupoidFunctor.piToPiTop_map, ContinuousMap.Homotopy.apply_one_path, FundamentalGroupoidFunctor.projLeft_map, FundamentalGroupoidFunctor.instIsIsoFanGrpdObjTopCatFundamentalGroupoidFunctorPiTopToPiCone, map_eq, FundamentalGroupoidFunctor.preservesProduct, FundamentalGroupoidFunctor.piToPiTop_obj_as, FundamentalGroupoidFunctor.piIso_inv, FundamentalGroupoidFunctor.prodIso_inv, FundamentalGroupoidFunctor.projRight_map, FundamentalGroupoidFunctor.prodToProdTop_map, FundamentalGroupoidFunctor.proj_map, FundamentalGroupoidFunctor.coneDiscreteComp_obj_mapCone, ContinuousMap.Homotopy.eq_diag_path
instGroupoid πŸ“–CompOp
21 mathmath: eqToHom_eq, map_comp, conj_eqToHom_assoc, map_map, instSubsingletonHomPUnit, simply_connected_def, comp_eq, FundamentalGroupoidFunctor.instIsIsoFunctorFundamentalGroupoidHomotopicMapsNatIso, SimplyConnectedSpace.equiv_unit, punitEquivDiscretePUnit_unitIso, IsCoveringMap.monodromyFunctor_obj, map_id, simplyConnectedSpace_iff, map_obj_as, IsCoveringMap.monodromyFunctor_map, conj_eqToHom, punitEquivDiscretePUnit_counitIso, id_eq_path_refl, punitEquivDiscretePUnit_inverse, ContinuousMap.Homotopy.hcast_def, punitEquivDiscretePUnit_functor
instInhabited πŸ“–CompOpβ€”
map πŸ“–CompOp
5 mathmath: map_comp, map_map, FundamentalGroupoidFunctor.instIsIsoFunctorFundamentalGroupoidHomotopicMapsNatIso, map_id, map_obj_as
termΟ€ πŸ“–CompOpβ€”
termΟ€β‚“ πŸ“–CompOpβ€”
termΟ€β‚˜ πŸ“–CompOpβ€”
toPath πŸ“–CompOpβ€”
toTop πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
comp_eq πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
FundamentalGroupoid
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
instGroupoid
Path.Homotopic.Quotient.trans
as
β€”β€”
conj_eqToHom πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
FundamentalGroupoid
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
instGroupoid
CategoryTheory.eqToHom
as
Path.cast
β€”CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
conj_eqToHom_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
FundamentalGroupoid
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
instGroupoid
CategoryTheory.eqToHom
Path.cast
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
conj_eqToHom
eqToHom_eq πŸ“–mathematicalβ€”CategoryTheory.eqToHom
FundamentalGroupoid
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
instGroupoid
Path
Path.Homotopic.setoid
as
Path.cast
Path.refl
β€”β€”
equiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
FundamentalGroupoid
EquivLike.toFunLike
Equiv.instEquivLike
equiv
as
β€”β€”
equiv_symm_apply_as πŸ“–mathematicalβ€”as
DFunLike.coe
Equiv
FundamentalGroupoid
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equiv
β€”β€”
ext πŸ“–β€”asβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”asβ€”ext
fromPath_eq_iff_homotopic πŸ“–mathematicalβ€”fromPath
Path.Homotopic
β€”β€”
id_eq_path_refl πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.id
FundamentalGroupoid
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
instGroupoid
Path
as
Path.Homotopic.setoid
Path.refl
β€”β€”
instIsEmpty πŸ“–mathematicalβ€”IsEmpty
FundamentalGroupoid
β€”Equiv.isEmpty
instNonempty πŸ“–mathematicalβ€”FundamentalGroupoidβ€”Equiv.nonempty
instSubsingleton πŸ“–mathematicalβ€”FundamentalGroupoidβ€”Equiv.subsingleton
isEmpty_iff πŸ“–mathematicalβ€”IsEmpty
FundamentalGroupoid
β€”Equiv.isEmpty_congr
map_comp πŸ“–mathematicalβ€”map
ContinuousMap.comp
CategoryTheory.Functor.comp
FundamentalGroupoid
CategoryTheory.Groupoid.toCategory
instGroupoid
β€”β€”
map_eq πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Bundled.Ξ±
CategoryTheory.Groupoid
CategoryTheory.Functor.obj
TopCat
TopCat.instCategory
CategoryTheory.Grpd
CategoryTheory.Grpd.category
fundamentalGroupoidFunctor
TopCat.of
TopCat.carrier
TopCat.str
CategoryTheory.Groupoid.toCategory
CategoryTheory.Grpd.str'
TopCat.ofHom
Path.Homotopic.Quotient.map
β€”β€”
map_id πŸ“–mathematicalβ€”map
ContinuousMap.id
CategoryTheory.Functor.id
FundamentalGroupoid
CategoryTheory.Groupoid.toCategory
instGroupoid
β€”β€”
map_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
FundamentalGroupoid
CategoryTheory.Groupoid.toCategory
instGroupoid
map
Path.Homotopic.Quotient.map
as
β€”β€”
map_obj_as πŸ“–mathematicalβ€”as
CategoryTheory.Functor.obj
FundamentalGroupoid
CategoryTheory.Groupoid.toCategory
instGroupoid
map
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
β€”β€”
nonempty_iff πŸ“–mathematicalβ€”FundamentalGroupoidβ€”Equiv.nonempty_congr
subsingleton_iff πŸ“–mathematicalβ€”FundamentalGroupoidβ€”Equiv.subsingleton_congr

Path.Homotopic

Theorems

NameKindAssumesProvesValidatesDepends On
refl_trans πŸ“–mathematicalβ€”Path.Homotopic
Path.trans
Path.refl
β€”β€”
symm_trans πŸ“–mathematicalβ€”Path.Homotopic
Path.trans
Path.symm
Path.refl
β€”β€”
trans_assoc πŸ“–mathematicalβ€”Path.Homotopic
Path.trans
β€”β€”
trans_refl πŸ“–mathematicalβ€”Path.Homotopic
Path.trans
Path.refl
β€”β€”
trans_symm πŸ“–mathematicalβ€”Path.Homotopic
Path.trans
Path.symm
Path.refl
β€”β€”

Path.Homotopic.Quotient

Theorems

NameKindAssumesProvesValidatesDepends On
refl_trans πŸ“–mathematicalβ€”trans
refl
β€”ind
Path.Homotopic.refl_trans
symm_trans πŸ“–mathematicalβ€”trans
symm
refl
β€”ind
Path.Homotopic.symm_trans
trans_assoc πŸ“–mathematicalβ€”transβ€”ind
Path.Homotopic.trans_assoc
trans_refl πŸ“–mathematicalβ€”trans
refl
β€”ind
Path.Homotopic.trans_refl
trans_symm πŸ“–mathematicalβ€”trans
symm
refl
β€”ind
Path.Homotopic.trans_symm

Path.Homotopy

Definitions

NameCategoryTheorems
reflSymmTrans πŸ“–CompOpβ€”
reflTrans πŸ“–CompOpβ€”
reflTransSymm πŸ“–CompOpβ€”
reflTransSymmAux πŸ“–CompOp
2 mathmath: reflTransSymmAux_mem_I, continuous_reflTransSymmAux
transAssoc πŸ“–CompOpβ€”
transAssocReparamAux πŸ“–CompOp
5 mathmath: continuous_transAssocReparamAux, transAssocReparamAux_mem_I, transAssocReparamAux_zero, transAssocReparamAux_one, trans_assoc_reparam
transRefl πŸ“–CompOpβ€”
transReflReparamAux πŸ“–CompOp
5 mathmath: transReflReparamAux_one, transReflReparamAux_zero, transReflReparamAux_mem_I, continuous_transReflReparamAux, trans_refl_reparam

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_reflTransSymmAux πŸ“–mathematicalβ€”Continuous
Set.Elem
Real
unitInterval
instTopologicalSpaceProd
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
reflTransSymmAux
β€”continuous_if_le
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Continuous.comp'
continuous_subtype_val
Continuous.snd
continuous_id'
continuous_const
ContinuousOn.fun_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Continuous.comp_continuousOn'
ContinuousOn.fst
continuousOn_id'
continuousOn_const
ContinuousOn.snd
ContinuousOn.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
continuous_transAssocReparamAux πŸ“–mathematicalβ€”Continuous
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
transAssocReparamAux
β€”continuous_if_le
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
continuous_subtype_val
continuous_const
ContinuousOn.fun_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuousOn_const
Continuous.continuousOn
ContinuousOn.fun_add
IsTopologicalSemiring.toContinuousAdd
continuous_transReflReparamAux πŸ“–mathematicalβ€”Continuous
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
transReflReparamAux
β€”continuous_if_le
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
continuous_subtype_val
continuous_const
ContinuousOn.fun_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuousOn_const
Continuous.continuousOn
reflTransSymmAux_mem_I πŸ“–mathematicalβ€”Real
Set
Set.instMembership
unitInterval
reflTransSymmAux
β€”mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
mul_assoc
mul_le_oneβ‚€
IsOrderedRing.toMulPosMono
transAssocReparamAux_mem_I πŸ“–mathematicalβ€”Real
Set
Set.instMembership
unitInterval
transAssocReparamAux
β€”le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
unitInterval.nonneg
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toCharZero
Mathlib.Tactic.Ring.neg_congr
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
lt_of_not_ge
CancelDenoms.add_subst
Mathlib.Meta.NormNum.IsNat.to_raw_eq
CancelDenoms.mul_subst
unitInterval.le_one
transAssocReparamAux_one πŸ“–mathematicalβ€”transAssocReparamAux
Set.Elem
Real
unitInterval
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Real.instOne
β€”Real.instIsOrderedRing
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.isRat_le_false
IsStrictOrderedRing.toNontrivial
Mathlib.Meta.NormNum.IsNNRat.to_isRat
mul_one
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
IsUnit.div_mul_cancel
Mathlib.Meta.NormNum.isNat_eq_false
Nat.cast_zero
transAssocReparamAux_zero πŸ“–mathematicalβ€”transAssocReparamAux
Set.Elem
Real
unitInterval
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Real.instZero
β€”Real.instIsOrderedRing
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.isRat_le_true
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Nat.cast_zero
MulZeroClass.mul_zero
zero_add
mul_one
transReflReparamAux_mem_I πŸ“–mathematicalβ€”Real
Set
Set.instMembership
unitInterval
transReflReparamAux
β€”le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
unitInterval.nonneg
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toCharZero
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
transReflReparamAux_one πŸ“–mathematicalβ€”transReflReparamAux
Set.Elem
Real
unitInterval
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Real.instOne
β€”Real.instIsOrderedRing
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.isRat_le_false
IsStrictOrderedRing.toNontrivial
Mathlib.Meta.NormNum.IsNNRat.to_isRat
mul_one
transReflReparamAux_zero πŸ“–mathematicalβ€”transReflReparamAux
Set.Elem
Real
unitInterval
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Real.instZero
β€”Real.instIsOrderedRing
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.isRat_le_true
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Nat.cast_zero
MulZeroClass.mul_zero
trans_assoc_reparam πŸ“–mathematicalβ€”Path.trans
Path.reparam
Real
Set
Set.instMembership
unitInterval
transAssocReparamAux
transAssocReparamAux_mem_I
Set.Elem
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
transAssocReparamAux_zero
Set.Icc.instOne
transAssocReparamAux_one
β€”Path.ext
transAssocReparamAux_mem_I
Real.instIsOrderedRing
transAssocReparamAux_zero
transAssocReparamAux_one
Nat.instAtLeastTwoHAddOfNat
unitInterval.mul_pos_mem_iff
zero_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
unitInterval.two_mul_sub_one_mem_iff
LT.lt.le
not_le
Path.trans_apply
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
lt_of_not_ge
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.mul_nonpos
CancelDenoms.mul_subst
CancelDenoms.add_subst
Mathlib.Tactic.Linarith.sub_nonpos_of_le
trans_refl_reparam πŸ“–mathematicalβ€”Path.trans
Path.refl
Path.reparam
Real
Set
Set.instMembership
unitInterval
transReflReparamAux
transReflReparamAux_mem_I
Set.Elem
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
transReflReparamAux_zero
Set.Icc.instOne
transReflReparamAux_one
β€”Path.ext
transReflReparamAux_mem_I
Real.instIsOrderedRing
transReflReparamAux_zero
transReflReparamAux_one

(root)

Definitions

NameCategoryTheorems
FundamentalGroupoid πŸ“–CompData
29 mathmath: FundamentalGroupoid.eqToHom_eq, FundamentalGroupoid.map_comp, FundamentalGroupoid.equiv_symm_apply_as, FundamentalGroupoid.conj_eqToHom_assoc, FundamentalGroupoid.instSubsingleton, FundamentalGroupoid.map_map, FundamentalGroupoid.equiv_apply, FundamentalGroupoid.nonempty_iff, FundamentalGroupoid.instSubsingletonHomPUnit, simply_connected_def, FundamentalGroupoid.comp_eq, FundamentalGroupoidFunctor.instIsIsoFunctorFundamentalGroupoidHomotopicMapsNatIso, SimplyConnectedSpace.equiv_unit, FundamentalGroupoid.instIsEmpty, FundamentalGroupoid.punitEquivDiscretePUnit_unitIso, IsCoveringMap.monodromyFunctor_obj, FundamentalGroupoid.map_id, simplyConnectedSpace_iff, FundamentalGroupoid.instNonempty, FundamentalGroupoid.map_obj_as, FundamentalGroupoid.subsingleton_iff, IsCoveringMap.monodromyFunctor_map, FundamentalGroupoid.conj_eqToHom, FundamentalGroupoid.isEmpty_iff, FundamentalGroupoid.punitEquivDiscretePUnit_counitIso, FundamentalGroupoid.id_eq_path_refl, FundamentalGroupoid.punitEquivDiscretePUnit_inverse, ContinuousMap.Homotopy.hcast_def, FundamentalGroupoid.punitEquivDiscretePUnit_functor

---

← Back to Index