| Name | Category | Theorems |
as π | CompOp | 24 mathmath: eqToHom_eq, equiv_symm_apply_as, ContinuousMap.Homotopy.apply_zero_path, ContinuousMap.Homotopy.evalAt_eq, map_map, ContinuousMap.Homotopy.heq_path_of_eq_image, equiv_apply, ContinuousMap.Homotopy.eq_path_of_eq_image, FundamentalGroupoidFunctor.prodToProdTop_obj, FundamentalGroupoidFunctor.piToPiTop_map, ContinuousMap.Homotopy.apply_one_path, FundamentalGroupoidFunctor.projLeft_map, comp_eq, IsCoveringMap.monodromyFunctor_obj, FundamentalGroupoidFunctor.piToPiTop_obj_as, map_obj_as, FundamentalGroupoidFunctor.projRight_map, IsCoveringMap.monodromyFunctor_map, conj_eqToHom, id_eq_path_refl, ext_iff, FundamentalGroupoidFunctor.prodToProdTop_map, FundamentalGroupoidFunctor.proj_map, ContinuousMap.Homotopy.eq_diag_path
|
equiv π | CompOp | 2 mathmath: equiv_symm_apply_as, equiv_apply
|
fromPath π | CompOp | 1 mathmath: fromPath_eq_iff_homotopic
|
fromTop π | CompOp | 5 mathmath: ContinuousMap.Homotopy.apply_zero_path, ContinuousMap.Homotopy.evalAt_eq, ContinuousMap.Homotopy.eq_path_of_eq_image, ContinuousMap.Homotopy.apply_one_path, ContinuousMap.Homotopy.eq_diag_path
|
fundamentalGroupoidFunctor π | CompOp | 21 mathmath: FundamentalGroupoidFunctor.piIso_hom, ContinuousMap.Homotopy.apply_zero_path, ContinuousMap.Homotopy.evalAt_eq, ContinuousMap.Homotopy.heq_path_of_eq_image, ContinuousMap.Homotopy.eq_path_of_eq_image, FundamentalGroupoidFunctor.prodToProdTop_obj, FundamentalGroupoidFunctor.prodIso_hom, FundamentalGroupoidFunctor.piToPiTop_map, ContinuousMap.Homotopy.apply_one_path, FundamentalGroupoidFunctor.projLeft_map, FundamentalGroupoidFunctor.instIsIsoFanGrpdObjTopCatFundamentalGroupoidFunctorPiTopToPiCone, map_eq, FundamentalGroupoidFunctor.preservesProduct, FundamentalGroupoidFunctor.piToPiTop_obj_as, FundamentalGroupoidFunctor.piIso_inv, FundamentalGroupoidFunctor.prodIso_inv, FundamentalGroupoidFunctor.projRight_map, FundamentalGroupoidFunctor.prodToProdTop_map, FundamentalGroupoidFunctor.proj_map, FundamentalGroupoidFunctor.coneDiscreteComp_obj_mapCone, ContinuousMap.Homotopy.eq_diag_path
|
instGroupoid π | CompOp | 21 mathmath: eqToHom_eq, map_comp, conj_eqToHom_assoc, map_map, instSubsingletonHomPUnit, simply_connected_def, comp_eq, FundamentalGroupoidFunctor.instIsIsoFunctorFundamentalGroupoidHomotopicMapsNatIso, SimplyConnectedSpace.equiv_unit, punitEquivDiscretePUnit_unitIso, IsCoveringMap.monodromyFunctor_obj, map_id, simplyConnectedSpace_iff, map_obj_as, IsCoveringMap.monodromyFunctor_map, conj_eqToHom, punitEquivDiscretePUnit_counitIso, id_eq_path_refl, punitEquivDiscretePUnit_inverse, ContinuousMap.Homotopy.hcast_def, punitEquivDiscretePUnit_functor
|
instInhabited π | CompOp | β |
map π | CompOp | 5 mathmath: map_comp, map_map, FundamentalGroupoidFunctor.instIsIsoFunctorFundamentalGroupoidHomotopicMapsNatIso, map_id, map_obj_as
|
termΟ π | CompOp | β |
termΟβ π | CompOp | β |
termΟβ π | CompOp | β |
toPath π | CompOp | β |
toTop π | CompOp | β |