Documentation Verification Report

InducedMaps

📁 Source: Mathlib/AlgebraicTopology/FundamentalGroupoid/InducedMaps.lean

Statistics

MetricCount
DefinitionsdiagonalPath, diagonalPath', hcast, prodToProdTopI, uliftMap, equivOfHomotopyEquiv, homotopicMapsNatIso, path01, uhpath01, upath01
10
Theoremsapply_one_path, apply_zero_path, eq_diag_path, eq_path_of_eq_image, evalAt_eq, hcast_def, heq_path_of_eq_image, ulift_apply, instIsIsoFunctorFundamentalGroupoidHomotopicMapsNatIso, map_trans_evalAt
10
Total20

ContinuousMap.Homotopy

Definitions

NameCategoryTheorems
diagonalPath 📖CompOp
diagonalPath' 📖CompOp
1 mathmath: eq_diag_path
hcast 📖CompOp
5 mathmath: apply_zero_path, evalAt_eq, eq_path_of_eq_image, apply_one_path, hcast_def
prodToProdTopI 📖CompOp
3 mathmath: apply_zero_path, evalAt_eq, apply_one_path
uliftMap 📖CompOp
4 mathmath: apply_zero_path, evalAt_eq, ulift_apply, apply_one_path

Theorems

NameKindAssumesProvesValidatesDepends On
apply_one_path 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Bundled.α
CategoryTheory.Groupoid
CategoryTheory.Functor.obj
TopCat
TopCat.instCategory
CategoryTheory.Grpd
CategoryTheory.Grpd.category
FundamentalGroupoid.fundamentalGroupoidFunctor
TopCat.of
TopCat.carrier
TopCat.str
CategoryTheory.Groupoid.toCategory
CategoryTheory.Grpd.str'
TopCat.ofHom
FundamentalGroupoid.fromTop
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
ContinuousMap.Homotopy
Set.Elem
Real
unitInterval
instFunLike
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
hcast
apply_one
instTopologicalSpaceProd
ULift.topologicalSpace
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
uliftMap
CategoryTheory.prod'
FundamentalGroupoidFunctor.prodToProdTop
prodToProdTopI
CategoryTheory.CategoryStruct.id
TopCat.Hom.hom
FundamentalGroupoid.as
Real.instIsOrderedRing
apply_one
eq_path_of_eq_image
Path.prod_coe
ulift_apply
apply_zero_path 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Bundled.α
CategoryTheory.Groupoid
CategoryTheory.Functor.obj
TopCat
TopCat.instCategory
CategoryTheory.Grpd
CategoryTheory.Grpd.category
FundamentalGroupoid.fundamentalGroupoidFunctor
TopCat.of
TopCat.carrier
TopCat.str
CategoryTheory.Groupoid.toCategory
CategoryTheory.Grpd.str'
TopCat.ofHom
FundamentalGroupoid.fromTop
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
ContinuousMap.Homotopy
Set.Elem
Real
unitInterval
instFunLike
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
hcast
apply_zero
instTopologicalSpaceProd
ULift.topologicalSpace
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
uliftMap
CategoryTheory.prod'
FundamentalGroupoidFunctor.prodToProdTop
prodToProdTopI
CategoryTheory.CategoryStruct.id
TopCat.Hom.hom
FundamentalGroupoid.as
Real.instIsOrderedRing
apply_zero
eq_path_of_eq_image
Path.prod_coe
ulift_apply
eq_diag_path 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Bundled.α
CategoryTheory.Groupoid
CategoryTheory.Functor.obj
TopCat
TopCat.instCategory
CategoryTheory.Grpd
CategoryTheory.Grpd.category
FundamentalGroupoid.fundamentalGroupoidFunctor
TopCat.of
TopCat.carrier
TopCat.str
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
CategoryTheory.Grpd.str'
CategoryTheory.Functor.map
TopCat.ofHom
FundamentalGroupoid.fromTop
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
Path
FundamentalGroupoid.as
Path.Homotopic.setoid
evalAt
diagonalPath'
Real.instIsOrderedRing
apply_zero
apply_zero_path
apply_one
apply_one_path
evalAt_eq
CategoryTheory.Category.assoc
CategoryTheory.eqToHom_trans
CategoryTheory.eqToHom_refl
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
eq_path_of_eq_image 📖mathematicalDFunLike.coe
ContinuousMap
TopCat.carrier
TopCat.str
ContinuousMap.instFunLike
Path
Set.Elem
Real
unitInterval
Path.instFunLike
CategoryTheory.Functor.map
CategoryTheory.Bundled.α
CategoryTheory.Groupoid
CategoryTheory.Functor.obj
TopCat
TopCat.instCategory
CategoryTheory.Grpd
CategoryTheory.Grpd.category
FundamentalGroupoid.fundamentalGroupoidFunctor
TopCat.of
CategoryTheory.Groupoid.toCategory
CategoryTheory.Grpd.str'
TopCat.ofHom
FundamentalGroupoid.as
Path.Homotopic.setoid
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
FundamentalGroupoid.fromTop
hcast
TopCat.Hom.hom
FundamentalGroupoid.ext
CategoryTheory.conj_eqToHom_iff_heq
heq_path_of_eq_image
evalAt_eq 📖mathematicalPath
TopCat.carrier
TopCat.str
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
Path.Homotopic.setoid
FundamentalGroupoid.as
FundamentalGroupoid.fromTop
TopCat.of
evalAt
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bundled.α
CategoryTheory.Groupoid
CategoryTheory.Functor.obj
TopCat
TopCat.instCategory
CategoryTheory.Grpd
CategoryTheory.Grpd.category
FundamentalGroupoid.fundamentalGroupoidFunctor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
CategoryTheory.Grpd.str'
ContinuousMap.Homotopy
Set.Elem
Real
unitInterval
instFunLike
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
hcast
apply_zero
instTopologicalSpaceProd
ULift.topologicalSpace
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
CategoryTheory.Functor.map
TopCat.ofHom
uliftMap
CategoryTheory.prod'
FundamentalGroupoidFunctor.prodToProdTop
Set.Icc.instOne
prodToProdTopI
unitInterval.uhpath01
CategoryTheory.CategoryStruct.id
TopCat.Hom.hom
apply_one
Real.instIsOrderedRing
apply_zero
apply_one
FundamentalGroupoid.ext
CategoryTheory.conj_eqToHom_iff_heq
Path.Homotopic.hpath_hext
ContinuousMap.continuous
hcast_def 📖mathematicalhcast
CategoryTheory.eqToHom
FundamentalGroupoid
TopCat.carrier
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
FundamentalGroupoid.instGroupoid
TopCat.str
FundamentalGroupoid.ext
heq_path_of_eq_image 📖mathematicalDFunLike.coe
ContinuousMap
TopCat.carrier
TopCat.str
ContinuousMap.instFunLike
Path
Set.Elem
Real
unitInterval
Path.instFunLike
Quiver.Hom
CategoryTheory.Bundled.α
CategoryTheory.Groupoid
CategoryTheory.Functor.obj
TopCat
TopCat.instCategory
CategoryTheory.Grpd
CategoryTheory.Grpd.category
FundamentalGroupoid.fundamentalGroupoidFunctor
TopCat.of
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Groupoid.toCategory
CategoryTheory.Grpd.str'
CategoryTheory.Functor.map
TopCat.ofHom
FundamentalGroupoid.as
Path.Homotopic.setoid
Path.Homotopic.hpath_hext
ContinuousMap.continuous
ulift_apply 📖mathematicalDFunLike.coe
ContinuousMap
TopCat.carrier
TopCat.of
Set.Elem
Real
unitInterval
instTopologicalSpaceProd
ULift.topologicalSpace
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
TopCat.str
ContinuousMap.instFunLike
uliftMap
ContinuousMap.Homotopy
instFunLike

FundamentalGroupoidFunctor

Definitions

NameCategoryTheorems
equivOfHomotopyEquiv 📖CompOp
homotopicMapsNatIso 📖CompOp
1 mathmath: instIsIsoFunctorFundamentalGroupoidHomotopicMapsNatIso

Theorems

NameKindAssumesProvesValidatesDepends On
instIsIsoFunctorFundamentalGroupoidHomotopicMapsNatIso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor
FundamentalGroupoid
CategoryTheory.Groupoid.toCategory
FundamentalGroupoid.instGroupoid
CategoryTheory.Functor.category
FundamentalGroupoid.map
homotopicMapsNatIso
CategoryTheory.NatIso.isIso_of_isIso_app
CategoryTheory.IsGroupoid.all_isIso
CategoryTheory.instIsGroupoid

Path.Homotopic

Theorems

NameKindAssumesProvesValidatesDepends On
map_trans_evalAt 📖mathematicalPath.Homotopic
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
Path.trans
Path.map
ContinuousMapClass.map_continuous
ContinuousMap.instContinuousMapClass
ContinuousMap.Homotopy.evalAt
Path.continuousMapClass
Real.instIsOrderedRing
ContinuousMapClass.map_continuous
ContinuousMap.instContinuousMapClass
ContinuousMap.continuous
Path.source
ContinuousMap.Homotopy.apply_zero
Path.target
ContinuousMap.Homotopy.apply_one
Path.ext
Nat.instAtLeastTwoHAddOfNat
unitInterval.two_mul_sub_one_mem_iff
LT.lt.le
not_le
one_div
unitInterval.mul_pos_mem_iff
zero_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Path.map_coe
Path.trans_apply

unitInterval

Definitions

NameCategoryTheorems
path01 📖CompOp
uhpath01 📖CompOp
1 mathmath: ContinuousMap.Homotopy.evalAt_eq
upath01 📖CompOp

---

← Back to Index