Documentation Verification Report

SimplyConnected

📁 Source: Mathlib/AlgebraicTopology/FundamentalGroupoid/SimplyConnected.lean

Statistics

MetricCount
DefinitionsIsSimplyConnected, SimplyConnectedSpace
2
TheoremssimplyConnectedSpace, simplyConnectedSpace_iff, isSimplyConnected_image, isSimplyConnected_preimage, isPathConnected, nonempty, simplyConnectedSpace, equiv_unit, instPathConnectedSpace, instSubsingletonQuotient, ofContractible, paths_homotopic, isSimplyConnected_image, isSimplyConnected_iff_exists_homotopy_refl_forall_mem, isSimplyConnected_smul_set_iff, isSimplyConnected_smul_set₀_iff, isSimplyConnected_vadd_set_iff, simplyConnectedSpace_iff, simply_connected_def, simply_connected_iff_loops_nullhomotopic, simply_connected_iff_paths_homotopic, simply_connected_iff_paths_homotopic', simply_connected_iff_unique_homotopic
23
Total25

ContinuousMap.HomotopyEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
simplyConnectedSpace 📖mathematicalSimplyConnectedSpaceNonempty.map
SimplyConnectedSpace.equiv_unit
simplyConnectedSpace_iff 📖mathematicalSimplyConnectedSpacesimplyConnectedSpace

Homeomorph

Theorems

NameKindAssumesProvesValidatesDepends On
isSimplyConnected_image 📖mathematicalIsSimplyConnected
Set.image
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
Topology.IsEmbedding.isSimplyConnected_image
isEmbedding
isSimplyConnected_preimage 📖mathematicalIsSimplyConnected
Set.preimage
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
image_symm
isSimplyConnected_image

IsSimplyConnected

Theorems

NameKindAssumesProvesValidatesDepends On
isPathConnected 📖mathematicalIsPathConnectedsimplyConnectedSpace
isPathConnected_iff_pathConnectedSpace
SimplyConnectedSpace.instPathConnectedSpace
nonempty 📖mathematicalSet.NonemptyIsPathConnected.nonempty
isPathConnected
simplyConnectedSpace 📖mathematicalSimplyConnectedSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership

SimplyConnectedSpace

Theorems

NameKindAssumesProvesValidatesDepends On
equiv_unit 📖mathematicalCategoryTheory.Equivalence
FundamentalGroupoid
CategoryTheory.Discrete
CategoryTheory.Groupoid.toCategory
FundamentalGroupoid.instGroupoid
CategoryTheory.discreteCategory
instPathConnectedSpace 📖mathematicalPathConnectedSpacesimply_connected_iff_unique_homotopic
instSubsingletonQuotient 📖mathematicalPath.Homotopic.QuotientUnique.instSubsingleton
simply_connected_iff_unique_homotopic
ofContractible 📖mathematicalSimplyConnectedSpaceContinuousMap.HomotopyEquiv.simplyConnectedSpace
ContractibleSpace.hequiv
ContractibleSpace.instOfNonemptyOfSubsingleton
paths_homotopic 📖mathematicalPath.HomotopicQuotient.eq
instSubsingletonQuotient

Topology.IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
isSimplyConnected_image 📖mathematicalTopology.IsEmbeddingIsSimplyConnected
Set.image
ContinuousMap.HomotopyEquiv.simplyConnectedSpace_iff

(root)

Definitions

NameCategoryTheorems
IsSimplyConnected 📖MathDef
7 mathmath: Topology.IsEmbedding.isSimplyConnected_image, Homeomorph.isSimplyConnected_image, isSimplyConnected_vadd_set_iff, isSimplyConnected_smul_set_iff, isSimplyConnected_smul_set₀_iff, Homeomorph.isSimplyConnected_preimage, isSimplyConnected_iff_exists_homotopy_refl_forall_mem
SimplyConnectedSpace 📖CompData
10 mathmath: simply_connected_def, simply_connected_iff_unique_homotopic, IsSimplyConnected.simplyConnectedSpace, simply_connected_iff_paths_homotopic, ContinuousMap.HomotopyEquiv.simplyConnectedSpace, simplyConnectedSpace_iff, ContinuousMap.HomotopyEquiv.simplyConnectedSpace_iff, simply_connected_iff_loops_nullhomotopic, SimplyConnectedSpace.ofContractible, simply_connected_iff_paths_homotopic'

Theorems

NameKindAssumesProvesValidatesDepends On
isSimplyConnected_iff_exists_homotopy_refl_forall_mem 📖mathematicalIsSimplyConnected
IsPathConnected
Set
Set.instMembership
DFunLike.coe
Path.Homotopy
Path.refl
Set.Elem
Real
unitInterval
ContinuousMap.HomotopyWith.instFunLike
instTopologicalSpaceSubtype
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Path.toContinuousMap
Real.instIsOrderedRing
IsSimplyConnected.eq_1
simply_connected_iff_loops_nullhomotopic
isPathConnected_iff_pathConnectedSpace
Iff.and
CanLift.prf
Subtype.canLift
Path.source
ContinuousMapClass.map_continuous
Path.continuousMapClass
Subtype.coe_eta
Path.target
continuous_subtype_val
ContinuousMap.HomotopyLike.toContinuousMapClass
ContinuousMap.HomotopyWith.instHomotopyLike
ContinuousMap.HomotopyWith.apply_zero
Path.map_coe
ContinuousMap.HomotopyWith.apply_one
Path.Homotopy.source
Path.Homotopy.target
isSimplyConnected_smul_set_iff 📖mathematicalIsSimplyConnected
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Homeomorph.isSimplyConnected_image
isSimplyConnected_smul_set₀_iff 📖mathematicalIsSimplyConnected
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
MulAction.toSemigroupAction
isSimplyConnected_smul_set_iff
Units.continuousConstSMul
isSimplyConnected_vadd_set_iff 📖mathematicalIsSimplyConnected
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Homeomorph.isSimplyConnected_image
simplyConnectedSpace_iff 📖mathematicalSimplyConnectedSpace
CategoryTheory.Equivalence
FundamentalGroupoid
CategoryTheory.Discrete
CategoryTheory.Groupoid.toCategory
FundamentalGroupoid.instGroupoid
CategoryTheory.discreteCategory
simply_connected_def 📖mathematicalSimplyConnectedSpace
CategoryTheory.Equivalence
FundamentalGroupoid
CategoryTheory.Discrete
CategoryTheory.Groupoid.toCategory
FundamentalGroupoid.instGroupoid
CategoryTheory.discreteCategory
simplyConnectedSpace_iff
simply_connected_iff_loops_nullhomotopic 📖mathematicalSimplyConnectedSpace
PathConnectedSpace
Path.Homotopic
Path.refl
simply_connected_iff_paths_homotopic'
Path.Homotopic.Quotient.eq
Path.Homotopic.Quotient.trans_assoc
Path.Homotopic.Quotient.symm_trans
Path.Homotopic.Quotient.trans_refl
simply_connected_iff_paths_homotopic 📖mathematicalSimplyConnectedSpace
PathConnectedSpace
Path.Homotopic.Quotient
SimplyConnectedSpace.instPathConnectedSpace
SimplyConnectedSpace.instSubsingletonQuotient
simply_connected_iff_unique_homotopic
ConnectedSpace.toNonempty
PathConnectedSpace.connectedSpace
simply_connected_iff_paths_homotopic' 📖mathematicalSimplyConnectedSpace
PathConnectedSpace
Path.Homotopic
simply_connected_iff_paths_homotopic
simply_connected_iff_unique_homotopic 📖mathematicalSimplyConnectedSpace
Unique
Path.Homotopic.Quotient
FundamentalGroupoid.nonempty_iff

---

← Back to Index