Documentation Verification Report

Cylinder

📁 Source: Mathlib/AlgebraicTopology/ModelCategory/Cylinder.lean

Statistics

MetricCount
DefinitionsCylinder, IsGood, IsVeryGood, ofFactorizationData, toPrecylinder, trans, Precylinder, I, i, i₀, i₁, trans, π
13
Theoremscofibration_i, fibration_π, toIsGood, exists_very_good, instCofibrationI₀, instCofibrationI₁, instIsCofibrantI, instIsFibrantIOfFactorizationDataOfIsStableUnderCompositionFibrations, instIsFibrantIOfIsVeryGood, instIsGoodSymmOfRespectsIsoCofibrations, instIsGoodTrans, instIsVeryGoodOfFactorizationData, instIsVeryGoodSymmOfRespectsIsoCofibrations, instNonempty, instWeakEquivalenceI₀, instWeakEquivalenceI₁, ofFactorizationData_I, ofFactorizationData_i, ofFactorizationData_i₀, ofFactorizationData_i₁, ofFactorizationData_π, symm_I, symm_i, symm_i_assoc, symm_i₀, symm_i₁, symm_π, trans_I, trans_i₀, trans_i₁, trans_π, weakEquivalence_π, inl_i, inl_i_assoc, inr_i, inr_i_assoc, i₀_π, i₀_π_assoc, i₁_π, i₁_π_assoc, symm_I, symm_i, symm_i_assoc, symm_i₀, symm_i₁, symm_π, trans_I, trans_i₀, trans_i₁, trans_π
50
Total63

HomotopicalAlgebra

Definitions

NameCategoryTheorems
Cylinder 📖CompData
1 mathmath: Cylinder.instNonempty
Precylinder 📖CompData

HomotopicalAlgebra.Cylinder

Definitions

NameCategoryTheorems
IsGood 📖CompData
5 mathmath: HomotopicalAlgebra.LeftHomotopyRel.exists_good_cylinder, IsVeryGood.toIsGood, LeftHomotopy.exists_good_cylinder, instIsGoodSymmOfRespectsIsoCofibrations, instIsGoodTrans
IsVeryGood 📖CompData
4 mathmath: HomotopicalAlgebra.LeftHomotopyRel.exists_very_good_cylinder, exists_very_good, instIsVeryGoodOfFactorizationData, instIsVeryGoodSymmOfRespectsIsoCofibrations
ofFactorizationData 📖CompOp
7 mathmath: ofFactorizationData_i₀, ofFactorizationData_i₁, ofFactorizationData_I, ofFactorizationData_i, instIsFibrantIOfFactorizationDataOfIsStableUnderCompositionFibrations, ofFactorizationData_π, instIsVeryGoodOfFactorizationData
toPrecylinder 📖CompOp
26 mathmath: instCofibrationI₁, ofFactorizationData_i₀, instIsCofibrantI, ofFactorizationData_i₁, LeftHomotopy.covering_homotopy, symm_i₁, ofFactorizationData_I, IsVeryGood.fibration_π, trans_π, ofFactorizationData_i, instIsFibrantIOfFactorizationDataOfIsStableUnderCompositionFibrations, instIsFibrantIOfIsVeryGood, symm_i, trans_i₀, IsGood.cofibration_i, symm_π, ofFactorizationData_π, trans_I, instCofibrationI₀, trans_i₁, symm_i₀, instWeakEquivalenceI₀, symm_i_assoc, symm_I, instWeakEquivalenceI₁, weakEquivalence_π
trans 📖CompOp
5 mathmath: trans_π, trans_i₀, trans_I, trans_i₁, instIsGoodTrans

Theorems

NameKindAssumesProvesValidatesDepends On
exists_very_good 📖mathematicalIsVeryGood
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
HomotopicalAlgebra.ModelCategory.cm5b
instIsVeryGoodOfFactorizationData
instCofibrationI₀ 📖mathematicalHomotopicalAlgebra.Cofibration
HomotopicalAlgebra.Precylinder.I
toPrecylinder
HomotopicalAlgebra.Precylinder.i₀
HomotopicalAlgebra.Precylinder.inl_i
HomotopicalAlgebra.instCofibrationCompOfIsStableUnderCompositionCofibrations
HomotopicalAlgebra.instCofibrationInlOfIsCofibrant
IsGood.cofibration_i
instCofibrationI₁ 📖mathematicalHomotopicalAlgebra.Cofibration
HomotopicalAlgebra.Precylinder.I
toPrecylinder
HomotopicalAlgebra.Precylinder.i₁
HomotopicalAlgebra.Precylinder.inr_i
HomotopicalAlgebra.instCofibrationCompOfIsStableUnderCompositionCofibrations
HomotopicalAlgebra.instCofibrationInrOfIsCofibrant
IsGood.cofibration_i
instIsCofibrantI 📖mathematicalHomotopicalAlgebra.IsCofibrant
HomotopicalAlgebra.Precylinder.I
toPrecylinder
HomotopicalAlgebra.isCofibrant_of_cofibration
instCofibrationI₀
instIsFibrantIOfFactorizationDataOfIsStableUnderCompositionFibrations 📖mathematicalHomotopicalAlgebra.IsFibrant
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
HomotopicalAlgebra.Precylinder.I
toPrecylinder
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
ofFactorizationData
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
HomotopicalAlgebra.isFibrant_of_fibration
IsVeryGood.fibration_π
instIsVeryGoodOfFactorizationData
instIsFibrantIOfIsVeryGood 📖mathematicalHomotopicalAlgebra.IsFibrant
HomotopicalAlgebra.Precylinder.I
toPrecylinder
HomotopicalAlgebra.isFibrant_of_fibration
IsVeryGood.fibration_π
instIsGoodSymmOfRespectsIsoCofibrations 📖mathematicalIsGood
symm
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
HomotopicalAlgebra.cofibration_iff
IsGood.cofibration_i
symm_i
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.Limits.coprod.desc_comp
HomotopicalAlgebra.Precylinder.inr_i
HomotopicalAlgebra.Precylinder.inl_i
CategoryTheory.Category.comp_id
instIsGoodTrans 📖mathematicalIsGood
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
trans
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.coprod.map_desc
CategoryTheory.Category.id_comp
CategoryTheory.Limits.coprod.hom_ext
CategoryTheory.Limits.pushout.condition
CategoryTheory.Limits.colimit.ι_desc
HomotopicalAlgebra.Precylinder.inl_i_assoc
HomotopicalAlgebra.Precylinder.inr_i_assoc
HomotopicalAlgebra.Precylinder.inl_i
CategoryTheory.IsPushout.of_hasPushout
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
HomotopicalAlgebra.cofibration_iff
CategoryTheory.MorphismProperty.of_isPushout
HomotopicalAlgebra.instIsStableUnderCobaseChangeCofibrations
HomotopicalAlgebra.ModelCategory.instIsWeakFactorizationSystemCofibrationsTrivialFibrations
CategoryTheory.IsPushout.of_top
CategoryTheory.IsPushout.flip
CategoryTheory.IsPushout.of_coprod_inl_with_id
IsGood.cofibration_i
HomotopicalAlgebra.instCofibrationCompOfIsStableUnderCompositionCofibrations
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
HomotopicalAlgebra.instIsMultiplicativeCofibrations
HomotopicalAlgebra.instCofibrationMapOfIsWeakFactorizationSystemCofibrationsTrivialFibrations_1
instCofibrationI₀
HomotopicalAlgebra.instCofibrationOfIsWeakFactorizationSystemTrivialCofibrationsFibrationsOfIsIso
HomotopicalAlgebra.ModelCategory.instIsWeakFactorizationSystemTrivialCofibrationsFibrations
CategoryTheory.IsIso.id
instIsVeryGoodOfFactorizationData 📖mathematicalIsVeryGood
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
ofFactorizationData
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
ofFactorizationData_i
HomotopicalAlgebra.instCofibrationICofibrationsTrivialFibrations
HomotopicalAlgebra.instFibrationPCofibrationsTrivialFibrations
instIsVeryGoodSymmOfRespectsIsoCofibrations 📖mathematicalIsVeryGood
symm
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instIsGoodSymmOfRespectsIsoCofibrations
IsVeryGood.toIsGood
IsVeryGood.fibration_π
instNonempty 📖mathematicalHomotopicalAlgebra.Cylinder
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
exists_very_good
instWeakEquivalenceI₀ 📖mathematicalHomotopicalAlgebra.WeakEquivalence
HomotopicalAlgebra.Precylinder.I
toPrecylinder
HomotopicalAlgebra.Precylinder.i₀
HomotopicalAlgebra.weakEquivalence_of_postcomp_of_fac
HomotopicalAlgebra.Precylinder.i₀_π
weakEquivalence_π
HomotopicalAlgebra.instWeakEquivalenceIdOfContainsIdentitiesWeakEquivalences
instWeakEquivalenceI₁ 📖mathematicalHomotopicalAlgebra.WeakEquivalence
HomotopicalAlgebra.Precylinder.I
toPrecylinder
HomotopicalAlgebra.Precylinder.i₁
HomotopicalAlgebra.weakEquivalence_of_postcomp_of_fac
HomotopicalAlgebra.Precylinder.i₁_π
weakEquivalence_π
HomotopicalAlgebra.instWeakEquivalenceIdOfContainsIdentitiesWeakEquivalences
ofFactorizationData_I 📖mathematicalHomotopicalAlgebra.Precylinder.I
toPrecylinder
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
ofFactorizationData
CategoryTheory.MorphismProperty.MapFactorizationData.Z
HomotopicalAlgebra.cofibrations
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
HomotopicalAlgebra.trivialFibrations
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
CategoryTheory.Limits.coprod
CategoryTheory.Limits.codiag
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
ofFactorizationData_i 📖mathematicalHomotopicalAlgebra.Precylinder.i
toPrecylinder
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
ofFactorizationData
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
CategoryTheory.MorphismProperty.MapFactorizationData.i
HomotopicalAlgebra.cofibrations
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
HomotopicalAlgebra.trivialFibrations
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
CategoryTheory.Limits.coprod
CategoryTheory.Limits.codiag
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
CategoryTheory.Limits.coprod.hom_ext
HomotopicalAlgebra.Precylinder.inl_i
HomotopicalAlgebra.Precylinder.inr_i
ofFactorizationData_i₀ 📖mathematicalHomotopicalAlgebra.Precylinder.i₀
toPrecylinder
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
ofFactorizationData
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coprod
CategoryTheory.MorphismProperty.MapFactorizationData.Z
HomotopicalAlgebra.cofibrations
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
HomotopicalAlgebra.trivialFibrations
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
CategoryTheory.Limits.codiag
CategoryTheory.Limits.coprod.inl
CategoryTheory.MorphismProperty.MapFactorizationData.i
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
ofFactorizationData_i₁ 📖mathematicalHomotopicalAlgebra.Precylinder.i₁
toPrecylinder
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
ofFactorizationData
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coprod
CategoryTheory.MorphismProperty.MapFactorizationData.Z
HomotopicalAlgebra.cofibrations
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
HomotopicalAlgebra.trivialFibrations
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
CategoryTheory.Limits.codiag
CategoryTheory.Limits.coprod.inr
CategoryTheory.MorphismProperty.MapFactorizationData.i
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
ofFactorizationData_π 📖mathematicalHomotopicalAlgebra.Precylinder.π
toPrecylinder
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
ofFactorizationData
CategoryTheory.MorphismProperty.MapFactorizationData.p
HomotopicalAlgebra.cofibrations
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
HomotopicalAlgebra.trivialFibrations
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
CategoryTheory.Limits.coprod
CategoryTheory.Limits.codiag
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
symm_I 📖mathematicalHomotopicalAlgebra.Precylinder.I
toPrecylinder
symm
symm_i 📖mathematicalHomotopicalAlgebra.Precylinder.i
toPrecylinder
symm
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coprod
HomotopicalAlgebra.Precylinder.I
CategoryTheory.Iso.hom
CategoryTheory.Limits.coprod.braiding
HomotopicalAlgebra.Precylinder.symm_i
symm_i_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coprod
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
HomotopicalAlgebra.Precylinder.I
toPrecylinder
symm
HomotopicalAlgebra.Precylinder.i
CategoryTheory.Iso.hom
CategoryTheory.Limits.coprod.braiding
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
symm_i
symm_i₀ 📖mathematicalHomotopicalAlgebra.Precylinder.i₀
toPrecylinder
symm
HomotopicalAlgebra.Precylinder.i₁
symm_i₁ 📖mathematicalHomotopicalAlgebra.Precylinder.i₁
toPrecylinder
symm
HomotopicalAlgebra.Precylinder.i₀
symm_π 📖mathematicalHomotopicalAlgebra.Precylinder.π
toPrecylinder
symm
trans_I 📖mathematicalHomotopicalAlgebra.Precylinder.I
toPrecylinder
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
trans
CategoryTheory.Limits.pushout
HomotopicalAlgebra.Precylinder.i₁
HomotopicalAlgebra.Precylinder.i₀
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
trans_i₀ 📖mathematicalHomotopicalAlgebra.Precylinder.i₀
toPrecylinder
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
trans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomotopicalAlgebra.Precylinder.I
CategoryTheory.Limits.pushout
HomotopicalAlgebra.Precylinder.i₁
CategoryTheory.Limits.pushout.inl
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
trans_i₁ 📖mathematicalHomotopicalAlgebra.Precylinder.i₁
toPrecylinder
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
trans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomotopicalAlgebra.Precylinder.I
CategoryTheory.Limits.pushout
HomotopicalAlgebra.Precylinder.i₀
CategoryTheory.Limits.pushout.inr
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
trans_π 📖mathematicalHomotopicalAlgebra.Precylinder.π
toPrecylinder
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
trans
CategoryTheory.Limits.pushout.desc
HomotopicalAlgebra.Precylinder.I
HomotopicalAlgebra.Precylinder.i₁
HomotopicalAlgebra.Precylinder.i₀
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
weakEquivalence_π 📖mathematicalHomotopicalAlgebra.WeakEquivalence
HomotopicalAlgebra.Precylinder.I
toPrecylinder
HomotopicalAlgebra.Precylinder.π

HomotopicalAlgebra.Cylinder.IsGood

Theorems

NameKindAssumesProvesValidatesDepends On
cofibration_i 📖mathematicalHomotopicalAlgebra.Cofibration
CategoryTheory.Limits.coprod
HomotopicalAlgebra.Precylinder.I
HomotopicalAlgebra.Cylinder.toPrecylinder
HomotopicalAlgebra.Precylinder.i

HomotopicalAlgebra.Cylinder.IsVeryGood

Theorems

NameKindAssumesProvesValidatesDepends On
fibration_π 📖mathematicalHomotopicalAlgebra.Fibration
HomotopicalAlgebra.Precylinder.I
HomotopicalAlgebra.Cylinder.toPrecylinder
HomotopicalAlgebra.Precylinder.π
toIsGood 📖mathematicalHomotopicalAlgebra.Cylinder.IsGood

HomotopicalAlgebra.Precylinder

Definitions

NameCategoryTheorems
I 📖CompOp
41 mathmath: HomotopicalAlgebra.Cylinder.instCofibrationI₁, trans_π, i₁_π_assoc, inr_i, inr_i_assoc, LeftHomotopy.h₀_assoc, HomotopicalAlgebra.Cylinder.instIsCofibrantI, HomotopicalAlgebra.Cylinder.LeftHomotopy.covering_homotopy, HomotopicalAlgebra.Cylinder.ofFactorizationData_I, symm_i_assoc, HomotopicalAlgebra.Cylinder.IsVeryGood.fibration_π, i₀_π, HomotopicalAlgebra.Cylinder.trans_π, LeftHomotopy.refl_h, HomotopicalAlgebra.Cylinder.instIsFibrantIOfFactorizationDataOfIsStableUnderCompositionFibrations, HomotopicalAlgebra.Cylinder.instIsFibrantIOfIsVeryGood, LeftHomotopy.trans_h, trans_I, symm_I, LeftHomotopy.h₁_assoc, LeftHomotopy.h₀, HomotopicalAlgebra.Cylinder.symm_i, HomotopicalAlgebra.Cylinder.trans_i₀, inl_i_assoc, HomotopicalAlgebra.Cylinder.IsGood.cofibration_i, LeftHomotopy.h₁, HomotopicalAlgebra.Cylinder.trans_I, HomotopicalAlgebra.Cylinder.instCofibrationI₀, HomotopicalAlgebra.Cylinder.trans_i₁, HomotopicalAlgebra.Cylinder.instWeakEquivalenceI₀, i₀_π_assoc, symm_i, LeftHomotopy.postcomp_h, i₁_π, HomotopicalAlgebra.Cylinder.symm_i_assoc, trans_i₁, HomotopicalAlgebra.Cylinder.symm_I, trans_i₀, inl_i, HomotopicalAlgebra.Cylinder.instWeakEquivalenceI₁, HomotopicalAlgebra.Cylinder.weakEquivalence_π
i 📖CompOp
10 mathmath: inr_i, inr_i_assoc, symm_i_assoc, HomotopicalAlgebra.Cylinder.ofFactorizationData_i, HomotopicalAlgebra.Cylinder.symm_i, inl_i_assoc, HomotopicalAlgebra.Cylinder.IsGood.cofibration_i, symm_i, HomotopicalAlgebra.Cylinder.symm_i_assoc, inl_i
i₀ 📖CompOp
22 mathmath: trans_π, LeftHomotopy.h₀_assoc, symm_i₀, HomotopicalAlgebra.Cylinder.ofFactorizationData_i₀, HomotopicalAlgebra.Cylinder.symm_i₁, i₀_π, HomotopicalAlgebra.Cylinder.trans_π, symm_i₁, LeftHomotopy.trans_h, trans_I, LeftHomotopy.h₀, HomotopicalAlgebra.Cylinder.trans_i₀, inl_i_assoc, HomotopicalAlgebra.Cylinder.trans_I, HomotopicalAlgebra.Cylinder.instCofibrationI₀, HomotopicalAlgebra.Cylinder.trans_i₁, HomotopicalAlgebra.Cylinder.symm_i₀, HomotopicalAlgebra.Cylinder.instWeakEquivalenceI₀, i₀_π_assoc, trans_i₁, trans_i₀, inl_i
i₁ 📖CompOp
22 mathmath: HomotopicalAlgebra.Cylinder.instCofibrationI₁, trans_π, i₁_π_assoc, inr_i, inr_i_assoc, symm_i₀, HomotopicalAlgebra.Cylinder.ofFactorizationData_i₁, HomotopicalAlgebra.Cylinder.symm_i₁, HomotopicalAlgebra.Cylinder.trans_π, symm_i₁, LeftHomotopy.trans_h, trans_I, LeftHomotopy.h₁_assoc, HomotopicalAlgebra.Cylinder.trans_i₀, LeftHomotopy.h₁, HomotopicalAlgebra.Cylinder.trans_I, HomotopicalAlgebra.Cylinder.trans_i₁, HomotopicalAlgebra.Cylinder.symm_i₀, i₁_π, trans_i₁, trans_i₀, HomotopicalAlgebra.Cylinder.instWeakEquivalenceI₁
trans 📖CompOp
5 mathmath: trans_π, LeftHomotopy.trans_h, trans_I, trans_i₁, trans_i₀
π 📖CompOp
12 mathmath: trans_π, i₁_π_assoc, HomotopicalAlgebra.Cylinder.IsVeryGood.fibration_π, i₀_π, HomotopicalAlgebra.Cylinder.trans_π, LeftHomotopy.refl_h, symm_π, HomotopicalAlgebra.Cylinder.symm_π, HomotopicalAlgebra.Cylinder.ofFactorizationData_π, i₀_π_assoc, i₁_π, HomotopicalAlgebra.Cylinder.weakEquivalence_π

Theorems

NameKindAssumesProvesValidatesDepends On
inl_i 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coprod
I
CategoryTheory.Limits.coprod.inl
i
i₀
CategoryTheory.Limits.colimit.ι_desc
inl_i_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coprod
CategoryTheory.Limits.coprod.inl
I
i
i₀
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inl_i
inr_i 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coprod
I
CategoryTheory.Limits.coprod.inr
i
i₁
CategoryTheory.Limits.colimit.ι_desc
inr_i_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coprod
CategoryTheory.Limits.coprod.inr
I
i
i₁
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inr_i
i₀_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
I
i₀
π
CategoryTheory.CategoryStruct.id
i₀_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
I
i₀
π
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
i₀_π
i₁_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
I
i₁
π
CategoryTheory.CategoryStruct.id
i₁_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
I
i₁
π
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
i₁_π
symm_I 📖mathematicalI
symm
symm_i 📖mathematicali
symm
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coprod
I
CategoryTheory.Iso.hom
CategoryTheory.Limits.coprod.braiding
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.coprod.desc_comp
inr_i
inl_i
symm_i_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.coprod
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
I
symm
i
CategoryTheory.Iso.hom
CategoryTheory.Limits.coprod.braiding
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
symm_i
symm_i₀ 📖mathematicali₀
symm
i₁
symm_i₁ 📖mathematicali₁
symm
i₀
symm_π 📖mathematicalπ
symm
trans_I 📖mathematicalI
trans
CategoryTheory.Limits.pushout
i₁
i₀
trans_i₀ 📖mathematicali₀
trans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
I
CategoryTheory.Limits.pushout
i₁
CategoryTheory.Limits.pushout.inl
trans_i₁ 📖mathematicali₁
trans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
I
CategoryTheory.Limits.pushout
i₀
CategoryTheory.Limits.pushout.inr
trans_π 📖mathematicalπ
trans
CategoryTheory.Limits.pushout.desc
I
i₁
i₀

---

← Back to Index