| Name | Category | Theorems |
I 📖 | CompOp | 41 mathmath: HomotopicalAlgebra.Cylinder.instCofibrationI₁, trans_π, i₁_π_assoc, inr_i, inr_i_assoc, LeftHomotopy.h₀_assoc, HomotopicalAlgebra.Cylinder.instIsCofibrantI, HomotopicalAlgebra.Cylinder.LeftHomotopy.covering_homotopy, HomotopicalAlgebra.Cylinder.ofFactorizationData_I, symm_i_assoc, HomotopicalAlgebra.Cylinder.IsVeryGood.fibration_π, i₀_π, HomotopicalAlgebra.Cylinder.trans_π, LeftHomotopy.refl_h, HomotopicalAlgebra.Cylinder.instIsFibrantIOfFactorizationDataOfIsStableUnderCompositionFibrations, HomotopicalAlgebra.Cylinder.instIsFibrantIOfIsVeryGood, LeftHomotopy.trans_h, trans_I, symm_I, LeftHomotopy.h₁_assoc, LeftHomotopy.h₀, HomotopicalAlgebra.Cylinder.symm_i, HomotopicalAlgebra.Cylinder.trans_i₀, inl_i_assoc, HomotopicalAlgebra.Cylinder.IsGood.cofibration_i, LeftHomotopy.h₁, HomotopicalAlgebra.Cylinder.trans_I, HomotopicalAlgebra.Cylinder.instCofibrationI₀, HomotopicalAlgebra.Cylinder.trans_i₁, HomotopicalAlgebra.Cylinder.instWeakEquivalenceI₀, i₀_π_assoc, symm_i, LeftHomotopy.postcomp_h, i₁_π, HomotopicalAlgebra.Cylinder.symm_i_assoc, trans_i₁, HomotopicalAlgebra.Cylinder.symm_I, trans_i₀, inl_i, HomotopicalAlgebra.Cylinder.instWeakEquivalenceI₁, HomotopicalAlgebra.Cylinder.weakEquivalence_π
|
i 📖 | CompOp | 10 mathmath: inr_i, inr_i_assoc, symm_i_assoc, HomotopicalAlgebra.Cylinder.ofFactorizationData_i, HomotopicalAlgebra.Cylinder.symm_i, inl_i_assoc, HomotopicalAlgebra.Cylinder.IsGood.cofibration_i, symm_i, HomotopicalAlgebra.Cylinder.symm_i_assoc, inl_i
|
i₀ 📖 | CompOp | 22 mathmath: trans_π, LeftHomotopy.h₀_assoc, symm_i₀, HomotopicalAlgebra.Cylinder.ofFactorizationData_i₀, HomotopicalAlgebra.Cylinder.symm_i₁, i₀_π, HomotopicalAlgebra.Cylinder.trans_π, symm_i₁, LeftHomotopy.trans_h, trans_I, LeftHomotopy.h₀, HomotopicalAlgebra.Cylinder.trans_i₀, inl_i_assoc, HomotopicalAlgebra.Cylinder.trans_I, HomotopicalAlgebra.Cylinder.instCofibrationI₀, HomotopicalAlgebra.Cylinder.trans_i₁, HomotopicalAlgebra.Cylinder.symm_i₀, HomotopicalAlgebra.Cylinder.instWeakEquivalenceI₀, i₀_π_assoc, trans_i₁, trans_i₀, inl_i
|
i₁ 📖 | CompOp | 22 mathmath: HomotopicalAlgebra.Cylinder.instCofibrationI₁, trans_π, i₁_π_assoc, inr_i, inr_i_assoc, symm_i₀, HomotopicalAlgebra.Cylinder.ofFactorizationData_i₁, HomotopicalAlgebra.Cylinder.symm_i₁, HomotopicalAlgebra.Cylinder.trans_π, symm_i₁, LeftHomotopy.trans_h, trans_I, LeftHomotopy.h₁_assoc, HomotopicalAlgebra.Cylinder.trans_i₀, LeftHomotopy.h₁, HomotopicalAlgebra.Cylinder.trans_I, HomotopicalAlgebra.Cylinder.trans_i₁, HomotopicalAlgebra.Cylinder.symm_i₀, i₁_π, trans_i₁, trans_i₀, HomotopicalAlgebra.Cylinder.instWeakEquivalenceI₁
|
trans 📖 | CompOp | 5 mathmath: trans_π, LeftHomotopy.trans_h, trans_I, trans_i₁, trans_i₀
|
π 📖 | CompOp | 12 mathmath: trans_π, i₁_π_assoc, HomotopicalAlgebra.Cylinder.IsVeryGood.fibration_π, i₀_π, HomotopicalAlgebra.Cylinder.trans_π, LeftHomotopy.refl_h, symm_π, HomotopicalAlgebra.Cylinder.symm_π, HomotopicalAlgebra.Cylinder.ofFactorizationData_π, i₀_π_assoc, i₁_π, HomotopicalAlgebra.Cylinder.weakEquivalence_π
|