Documentation Verification Report

IsCofibrant

📁 Source: Mathlib/AlgebraicTopology/ModelCategory/IsCofibrant.lean

Statistics

MetricCount
DefinitionsIsCofibrant, IsFibrant
2
TheoremsinstCofibrationInlOfIsCofibrant, instCofibrationInrOfIsCofibrant, instFibrationFstOfIsFibrant, instFibrationSndOfIsFibrant, isCofibrant_iff, isCofibrant_iff_of_isInitial, isCofibrant_of_cofibration, isFibrant_iff, isFibrant_iff_of_isTerminal, isFibrant_of_fibration
10
Total12

HomotopicalAlgebra

Definitions

NameCategoryTheorems
IsCofibrant 📖MathDef
13 mathmath: Cylinder.instIsCofibrantI, CofibrantObject.instIsCofibrantObjι, CofibrantObject.instIsCofibrantObjFunctorWeakEquivalencesLocalizerMorphism, BifibrantObject.instIsCofibrantObjFibrantObjectsObjFibrantObjectιFibrantObject, PathObject.instIsCofibrantPOfFactorizationDataOfIsStableUnderCompositionCofibrations, CofibrantObject.instIsCofibrantResolutionObj, isCofibrant_iff, PathObject.instIsCofibrantPOfIsVeryGood, isCofibrant_of_cofibration, BifibrantObject.instIsCofibrantObjBifibrantObjects, BifibrantObject.instIsCofibrantObjι, CofibrantObject.instIsCofibrantObjCofibrantObjects, isCofibrant_iff_of_isInitial
IsFibrant 📖MathDef
14 mathmath: isFibrant_iff_of_isTerminal, BifibrantObject.instIsFibrantObjBifibrantObjects, CofibrantObject.instIsFibrantObjιBifibrantObjectιCofibrantObject, Cylinder.instIsFibrantIOfFactorizationDataOfIsStableUnderCompositionFibrations, PathObject.instIsFibrantP, Cylinder.instIsFibrantIOfIsVeryGood, FibrantObject.instIsFibrantObjι, isFibrant_of_fibration, BifibrantObject.instIsFibrantObjCofibrantObjectsObjCofibrantObjectιCofibrantObject, FibrantObject.instIsFibrantResolutionObj, FibrantObject.instIsFibrantObjFibrantObjects, isFibrant_iff, FibrantObject.instIsFibrantObjFunctorWeakEquivalencesLocalizerMorphism, BifibrantObject.instIsFibrantObjι

Theorems

NameKindAssumesProvesValidatesDepends On
instCofibrationInlOfIsCofibrant 📖mathematicalCofibration
CategoryTheory.Limits.coprod
CategoryTheory.Limits.coprod.inl
cofibration_iff
CategoryTheory.MorphismProperty.of_isPushout
CategoryTheory.IsPushout.flip
CategoryTheory.IsPushout.of_isColimit_binaryCofan_of_isInitial
isCofibrant_iff
instCofibrationInrOfIsCofibrant 📖mathematicalCofibration
CategoryTheory.Limits.coprod
CategoryTheory.Limits.coprod.inr
cofibration_iff
CategoryTheory.MorphismProperty.of_isPushout
CategoryTheory.IsPushout.of_isColimit_binaryCofan_of_isInitial
isCofibrant_iff
instFibrationFstOfIsFibrant 📖mathematicalFibration
CategoryTheory.Limits.prod
CategoryTheory.Limits.prod.fst
fibration_iff
CategoryTheory.MorphismProperty.of_isPullback
CategoryTheory.IsPullback.flip
CategoryTheory.IsPullback.of_isLimit_binaryFan_of_isTerminal
isFibrant_iff
instFibrationSndOfIsFibrant 📖mathematicalFibration
CategoryTheory.Limits.prod
CategoryTheory.Limits.prod.snd
fibration_iff
CategoryTheory.MorphismProperty.of_isPullback
CategoryTheory.IsPullback.of_isLimit_binaryFan_of_isTerminal
isFibrant_iff
isCofibrant_iff 📖mathematicalIsCofibrant
Cofibration
CategoryTheory.Limits.initial
CategoryTheory.Limits.initial.to
isCofibrant_iff_of_isInitial 📖mathematicalIsCofibrant
Cofibration
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.Limits.IsInitial.to_comp
CategoryTheory.Category.comp_id
isCofibrant_of_cofibration 📖mathematicalIsCofibrantisCofibrant_iff
Unique.instSubsingleton
instCofibrationCompOfIsStableUnderCompositionCofibrations
isFibrant_iff 📖mathematicalIsFibrant
Fibration
CategoryTheory.Limits.terminal
CategoryTheory.Limits.terminal.from
isFibrant_iff_of_isTerminal 📖mathematicalIsFibrant
Fibration
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.Limits.terminal.comp_from
CategoryTheory.Limits.IsTerminal.comp_from
isFibrant_of_fibration 📖mathematicalIsFibrantisFibrant_iff
Unique.instSubsingleton
instFibrationCompOfIsStableUnderCompositionFibrations

---

← Back to Index