Documentation Verification Report

PathObject

📁 Source: Mathlib/AlgebraicTopology/ModelCategory/PathObject.lean

Statistics

MetricCount
DefinitionsPathObject, IsGood, IsVeryGood, ofFactorizationData, toPrepathObject, trans, PrepathObject, P, p, p₀, p₁, trans, ι
13
Theoremsfibration_p, cofibration_ι, toIsGood, exists_very_good, instFibrationP₀, instFibrationP₁, instIsCofibrantPOfFactorizationDataOfIsStableUnderCompositionCofibrations, instIsCofibrantPOfIsVeryGood, instIsFibrantP, instIsGoodSymmOfRespectsIsoFibrations, instIsGoodTrans, instIsVeryGoodOfFactorizationData, instIsVeryGoodSymmOfRespectsIsoFibrations, instNonempty, instWeakEquivalenceP₀, instWeakEquivalenceP₁, ofFactorizationData_P, ofFactorizationData_p, ofFactorizationData_p₀, ofFactorizationData_p₁, ofFactorizationData_ι, symm_P, symm_p, symm_p_assoc, symm_p₀, symm_p₁, symm_ι, trans_P, trans_p₀, trans_p₁, trans_ι, weakEquivalence_ι, p_fst, p_fst_assoc, p_snd, p_snd_assoc, symm_P, symm_p, symm_p_assoc, symm_p₀, symm_p₁, symm_ι, trans_P, trans_p₀, trans_p₁, trans_ι, ι_p₀, ι_p₀_assoc, ι_p₁, ι_p₁_assoc
50
Total63

HomotopicalAlgebra

Definitions

NameCategoryTheorems
PathObject 📖CompData
1 mathmath: PathObject.instNonempty
PrepathObject 📖CompData

HomotopicalAlgebra.PathObject

Definitions

NameCategoryTheorems
IsGood 📖CompData
5 mathmath: instIsGoodTrans, HomotopicalAlgebra.RightHomotopyRel.exists_good_pathObject, RightHomotopy.exists_good_pathObject, IsVeryGood.toIsGood, instIsGoodSymmOfRespectsIsoFibrations
IsVeryGood 📖CompData
4 mathmath: exists_very_good, HomotopicalAlgebra.RightHomotopyRel.exists_very_good_pathObject, instIsVeryGoodSymmOfRespectsIsoFibrations, instIsVeryGoodOfFactorizationData
ofFactorizationData 📖CompOp
7 mathmath: ofFactorizationData_p, instIsCofibrantPOfFactorizationDataOfIsStableUnderCompositionCofibrations, ofFactorizationData_p₁, instIsVeryGoodOfFactorizationData, ofFactorizationData_P, ofFactorizationData_p₀, ofFactorizationData_ι
toPrepathObject 📖CompOp
26 mathmath: weakEquivalence_ι, symm_p₁, instFibrationP₀, symm_p₀, ofFactorizationData_p, symm_p_assoc, symm_p, IsVeryGood.cofibration_ι, instIsCofibrantPOfFactorizationDataOfIsStableUnderCompositionCofibrations, ofFactorizationData_p₁, instIsFibrantP, trans_p₀, instFibrationP₁, symm_ι, ofFactorizationData_P, trans_ι, symm_P, ofFactorizationData_p₀, instIsCofibrantPOfIsVeryGood, instWeakEquivalenceP₁, ofFactorizationData_ι, IsGood.fibration_p, RightHomotopy.homotopy_extension, instWeakEquivalenceP₀, trans_p₁, trans_P
trans 📖CompOp
5 mathmath: instIsGoodTrans, trans_p₀, trans_ι, trans_p₁, trans_P

Theorems

NameKindAssumesProvesValidatesDepends On
exists_very_good 📖mathematicalIsVeryGood
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
HomotopicalAlgebra.ModelCategory.cm5a
instIsVeryGoodOfFactorizationData
instFibrationP₀ 📖mathematicalHomotopicalAlgebra.Fibration
HomotopicalAlgebra.PrepathObject.P
toPrepathObject
HomotopicalAlgebra.PrepathObject.p₀
HomotopicalAlgebra.PrepathObject.p_fst
HomotopicalAlgebra.instFibrationCompOfIsStableUnderCompositionFibrations
IsGood.fibration_p
HomotopicalAlgebra.instFibrationFstOfIsFibrant
instFibrationP₁ 📖mathematicalHomotopicalAlgebra.Fibration
HomotopicalAlgebra.PrepathObject.P
toPrepathObject
HomotopicalAlgebra.PrepathObject.p₁
HomotopicalAlgebra.PrepathObject.p_snd
HomotopicalAlgebra.instFibrationCompOfIsStableUnderCompositionFibrations
IsGood.fibration_p
HomotopicalAlgebra.instFibrationSndOfIsFibrant
instIsCofibrantPOfFactorizationDataOfIsStableUnderCompositionCofibrations 📖mathematicalHomotopicalAlgebra.IsCofibrant
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
HomotopicalAlgebra.PrepathObject.P
toPrepathObject
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
ofFactorizationData
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
HomotopicalAlgebra.isCofibrant_of_cofibration
IsVeryGood.cofibration_ι
instIsVeryGoodOfFactorizationData
instIsCofibrantPOfIsVeryGood 📖mathematicalHomotopicalAlgebra.IsCofibrant
HomotopicalAlgebra.PrepathObject.P
toPrepathObject
HomotopicalAlgebra.isCofibrant_of_cofibration
IsVeryGood.cofibration_ι
instIsFibrantP 📖mathematicalHomotopicalAlgebra.IsFibrant
HomotopicalAlgebra.PrepathObject.P
toPrepathObject
HomotopicalAlgebra.isFibrant_of_fibration
instFibrationP₀
instIsGoodSymmOfRespectsIsoFibrations 📖mathematicalIsGood
symm
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
HomotopicalAlgebra.fibration_iff
IsGood.fibration_p
symm_p
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.Category.id_comp
CategoryTheory.Limits.prod.comp_lift
HomotopicalAlgebra.PrepathObject.p_snd
HomotopicalAlgebra.PrepathObject.p_fst
CategoryTheory.Limits.limit.lift_π
instIsGoodTrans 📖mathematicalIsGood
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
trans
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.prod.lift_map
CategoryTheory.Category.comp_id
CategoryTheory.Limits.prod.hom_ext
CategoryTheory.Limits.pullback.condition
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Category.assoc
HomotopicalAlgebra.PrepathObject.p_fst
HomotopicalAlgebra.PrepathObject.p_snd
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.IsPullback.of_hasPullback
HomotopicalAlgebra.fibration_iff
CategoryTheory.MorphismProperty.of_isPullback
HomotopicalAlgebra.instIsStableUnderBaseChangeFibrations
HomotopicalAlgebra.ModelCategory.instIsWeakFactorizationSystemTrivialCofibrationsFibrations
CategoryTheory.IsPullback.flip
CategoryTheory.IsPullback.of_right
CategoryTheory.IsPullback.of_prod_fst_with_id
IsGood.fibration_p
HomotopicalAlgebra.instFibrationCompOfIsStableUnderCompositionFibrations
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
HomotopicalAlgebra.instIsMultiplicativeFibrations
HomotopicalAlgebra.instFibrationMapOfIsWeakFactorizationSystemTrivialCofibrationsFibrations_1
instFibrationP₀
HomotopicalAlgebra.instFibrationOfIsWeakFactorizationSystemCofibrationsTrivialFibrationsOfIsIso
HomotopicalAlgebra.ModelCategory.instIsWeakFactorizationSystemCofibrationsTrivialFibrations
CategoryTheory.IsIso.id
instIsVeryGoodOfFactorizationData 📖mathematicalIsVeryGood
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
ofFactorizationData
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
ofFactorizationData_p
HomotopicalAlgebra.instFibrationPTrivialCofibrationsFibrations
HomotopicalAlgebra.instCofibrationITrivialCofibrationsFibrations
instIsVeryGoodSymmOfRespectsIsoFibrations 📖mathematicalIsVeryGood
symm
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
instIsGoodSymmOfRespectsIsoFibrations
IsVeryGood.toIsGood
IsVeryGood.cofibration_ι
instNonempty 📖mathematicalHomotopicalAlgebra.PathObject
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
exists_very_good
instWeakEquivalenceP₀ 📖mathematicalHomotopicalAlgebra.WeakEquivalence
HomotopicalAlgebra.PrepathObject.P
toPrepathObject
HomotopicalAlgebra.PrepathObject.p₀
HomotopicalAlgebra.weakEquivalence_of_precomp_of_fac
HomotopicalAlgebra.PrepathObject.ι_p₀
weakEquivalence_ι
HomotopicalAlgebra.instWeakEquivalenceIdOfContainsIdentitiesWeakEquivalences
instWeakEquivalenceP₁ 📖mathematicalHomotopicalAlgebra.WeakEquivalence
HomotopicalAlgebra.PrepathObject.P
toPrepathObject
HomotopicalAlgebra.PrepathObject.p₁
HomotopicalAlgebra.weakEquivalence_of_precomp_of_fac
HomotopicalAlgebra.PrepathObject.ι_p₁
weakEquivalence_ι
HomotopicalAlgebra.instWeakEquivalenceIdOfContainsIdentitiesWeakEquivalences
ofFactorizationData_P 📖mathematicalHomotopicalAlgebra.PrepathObject.P
toPrepathObject
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
ofFactorizationData
CategoryTheory.MorphismProperty.MapFactorizationData.Z
HomotopicalAlgebra.trivialCofibrations
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
HomotopicalAlgebra.fibrations
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
CategoryTheory.Limits.prod
CategoryTheory.Limits.diag
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
ofFactorizationData_p 📖mathematicalHomotopicalAlgebra.PrepathObject.p
toPrepathObject
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
ofFactorizationData
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
CategoryTheory.MorphismProperty.MapFactorizationData.p
HomotopicalAlgebra.trivialCofibrations
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
HomotopicalAlgebra.fibrations
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
CategoryTheory.Limits.prod
CategoryTheory.Limits.diag
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
CategoryTheory.Limits.prod.hom_ext
HomotopicalAlgebra.PrepathObject.p_fst
HomotopicalAlgebra.PrepathObject.p_snd
ofFactorizationData_p₀ 📖mathematicalHomotopicalAlgebra.PrepathObject.p₀
toPrepathObject
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
ofFactorizationData
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.MapFactorizationData.Z
HomotopicalAlgebra.trivialCofibrations
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
HomotopicalAlgebra.fibrations
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
CategoryTheory.Limits.prod
CategoryTheory.Limits.diag
CategoryTheory.MorphismProperty.MapFactorizationData.p
CategoryTheory.Limits.prod.fst
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
ofFactorizationData_p₁ 📖mathematicalHomotopicalAlgebra.PrepathObject.p₁
toPrepathObject
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
ofFactorizationData
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.MapFactorizationData.Z
HomotopicalAlgebra.trivialCofibrations
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
HomotopicalAlgebra.fibrations
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
CategoryTheory.Limits.prod
CategoryTheory.Limits.diag
CategoryTheory.MorphismProperty.MapFactorizationData.p
CategoryTheory.Limits.prod.snd
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
ofFactorizationData_ι 📖mathematicalHomotopicalAlgebra.PrepathObject.ι
toPrepathObject
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
ofFactorizationData
CategoryTheory.MorphismProperty.MapFactorizationData.i
HomotopicalAlgebra.trivialCofibrations
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
HomotopicalAlgebra.fibrations
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
CategoryTheory.Limits.prod
CategoryTheory.Limits.diag
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
symm_P 📖mathematicalHomotopicalAlgebra.PrepathObject.P
toPrepathObject
symm
symm_p 📖mathematicalHomotopicalAlgebra.PrepathObject.p
toPrepathObject
symm
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomotopicalAlgebra.PrepathObject.P
CategoryTheory.Limits.prod
CategoryTheory.Iso.hom
CategoryTheory.Limits.prod.braiding
HomotopicalAlgebra.PrepathObject.symm_p
symm_p_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomotopicalAlgebra.PrepathObject.P
toPrepathObject
symm
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
HomotopicalAlgebra.PrepathObject.p
CategoryTheory.Iso.hom
CategoryTheory.Limits.prod.braiding
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
symm_p
symm_p₀ 📖mathematicalHomotopicalAlgebra.PrepathObject.p₀
toPrepathObject
symm
HomotopicalAlgebra.PrepathObject.p₁
symm_p₁ 📖mathematicalHomotopicalAlgebra.PrepathObject.p₁
toPrepathObject
symm
HomotopicalAlgebra.PrepathObject.p₀
symm_ι 📖mathematicalHomotopicalAlgebra.PrepathObject.ι
toPrepathObject
symm
trans_P 📖mathematicalHomotopicalAlgebra.PrepathObject.P
toPrepathObject
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
trans
CategoryTheory.Limits.pullback
HomotopicalAlgebra.PrepathObject.p₁
HomotopicalAlgebra.PrepathObject.p₀
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
trans_p₀ 📖mathematicalHomotopicalAlgebra.PrepathObject.p₀
toPrepathObject
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
trans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
HomotopicalAlgebra.PrepathObject.P
HomotopicalAlgebra.PrepathObject.p₁
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
trans_p₁ 📖mathematicalHomotopicalAlgebra.PrepathObject.p₁
toPrepathObject
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
trans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
HomotopicalAlgebra.PrepathObject.P
HomotopicalAlgebra.PrepathObject.p₀
CategoryTheory.Limits.pullback.snd
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
trans_ι 📖mathematicalHomotopicalAlgebra.PrepathObject.ι
toPrepathObject
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
trans
CategoryTheory.Limits.pullback.lift
HomotopicalAlgebra.PrepathObject.P
HomotopicalAlgebra.PrepathObject.p₁
HomotopicalAlgebra.PrepathObject.p₀
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
weakEquivalence_ι 📖mathematicalHomotopicalAlgebra.WeakEquivalence
HomotopicalAlgebra.PrepathObject.P
toPrepathObject
HomotopicalAlgebra.PrepathObject.ι

HomotopicalAlgebra.PathObject.IsGood

Theorems

NameKindAssumesProvesValidatesDepends On
fibration_p 📖mathematicalHomotopicalAlgebra.Fibration
HomotopicalAlgebra.PrepathObject.P
HomotopicalAlgebra.PathObject.toPrepathObject
CategoryTheory.Limits.prod
HomotopicalAlgebra.PrepathObject.p

HomotopicalAlgebra.PathObject.IsVeryGood

Theorems

NameKindAssumesProvesValidatesDepends On
cofibration_ι 📖mathematicalHomotopicalAlgebra.Cofibration
HomotopicalAlgebra.PrepathObject.P
HomotopicalAlgebra.PathObject.toPrepathObject
HomotopicalAlgebra.PrepathObject.ι
toIsGood 📖mathematicalHomotopicalAlgebra.PathObject.IsGood

HomotopicalAlgebra.PrepathObject

Definitions

NameCategoryTheorems
P 📖CompOp
41 mathmath: HomotopicalAlgebra.PathObject.weakEquivalence_ι, p_fst_assoc, p_snd, trans_p₀, trans_P, HomotopicalAlgebra.PathObject.instFibrationP₀, ι_p₁_assoc, symm_p, p_fst, trans_p₁, RightHomotopy.refl_h, HomotopicalAlgebra.PathObject.symm_p_assoc, HomotopicalAlgebra.PathObject.symm_p, HomotopicalAlgebra.PathObject.IsVeryGood.cofibration_ι, HomotopicalAlgebra.PathObject.instIsCofibrantPOfFactorizationDataOfIsStableUnderCompositionCofibrations, RightHomotopy.precomp_h, HomotopicalAlgebra.PathObject.instIsFibrantP, HomotopicalAlgebra.PathObject.trans_p₀, symm_P, HomotopicalAlgebra.PathObject.instFibrationP₁, HomotopicalAlgebra.PathObject.ofFactorizationData_P, symm_p_assoc, HomotopicalAlgebra.PathObject.trans_ι, RightHomotopy.h₀, HomotopicalAlgebra.PathObject.symm_P, p_snd_assoc, RightHomotopy.h₀_assoc, ι_p₀, HomotopicalAlgebra.PathObject.instIsCofibrantPOfIsVeryGood, HomotopicalAlgebra.PathObject.instWeakEquivalenceP₁, HomotopicalAlgebra.PathObject.IsGood.fibration_p, RightHomotopy.h₁, RightHomotopy.h₁_assoc, HomotopicalAlgebra.PathObject.RightHomotopy.homotopy_extension, HomotopicalAlgebra.PathObject.instWeakEquivalenceP₀, ι_p₁, ι_p₀_assoc, HomotopicalAlgebra.PathObject.trans_p₁, RightHomotopy.trans_h, HomotopicalAlgebra.PathObject.trans_P, trans_ι
p 📖CompOp
10 mathmath: p_fst_assoc, p_snd, symm_p, p_fst, HomotopicalAlgebra.PathObject.ofFactorizationData_p, HomotopicalAlgebra.PathObject.symm_p_assoc, HomotopicalAlgebra.PathObject.symm_p, symm_p_assoc, p_snd_assoc, HomotopicalAlgebra.PathObject.IsGood.fibration_p
p₀ 📖CompOp
22 mathmath: p_fst_assoc, HomotopicalAlgebra.PathObject.symm_p₁, trans_p₀, trans_P, HomotopicalAlgebra.PathObject.instFibrationP₀, HomotopicalAlgebra.PathObject.symm_p₀, p_fst, trans_p₁, symm_p₁, HomotopicalAlgebra.PathObject.trans_p₀, HomotopicalAlgebra.PathObject.trans_ι, RightHomotopy.h₀, symm_p₀, RightHomotopy.h₀_assoc, HomotopicalAlgebra.PathObject.ofFactorizationData_p₀, ι_p₀, HomotopicalAlgebra.PathObject.instWeakEquivalenceP₀, ι_p₀_assoc, HomotopicalAlgebra.PathObject.trans_p₁, RightHomotopy.trans_h, HomotopicalAlgebra.PathObject.trans_P, trans_ι
p₁ 📖CompOp
22 mathmath: HomotopicalAlgebra.PathObject.symm_p₁, p_snd, trans_p₀, trans_P, HomotopicalAlgebra.PathObject.symm_p₀, ι_p₁_assoc, trans_p₁, symm_p₁, HomotopicalAlgebra.PathObject.ofFactorizationData_p₁, HomotopicalAlgebra.PathObject.trans_p₀, HomotopicalAlgebra.PathObject.instFibrationP₁, HomotopicalAlgebra.PathObject.trans_ι, p_snd_assoc, symm_p₀, HomotopicalAlgebra.PathObject.instWeakEquivalenceP₁, RightHomotopy.h₁, RightHomotopy.h₁_assoc, ι_p₁, HomotopicalAlgebra.PathObject.trans_p₁, RightHomotopy.trans_h, HomotopicalAlgebra.PathObject.trans_P, trans_ι
trans 📖CompOp
5 mathmath: trans_p₀, trans_P, trans_p₁, RightHomotopy.trans_h, trans_ι
ι 📖CompOp
12 mathmath: HomotopicalAlgebra.PathObject.weakEquivalence_ι, ι_p₁_assoc, symm_ι, RightHomotopy.refl_h, HomotopicalAlgebra.PathObject.IsVeryGood.cofibration_ι, HomotopicalAlgebra.PathObject.symm_ι, HomotopicalAlgebra.PathObject.trans_ι, ι_p₀, HomotopicalAlgebra.PathObject.ofFactorizationData_ι, ι_p₁, ι_p₀_assoc, trans_ι

Theorems

NameKindAssumesProvesValidatesDepends On
p_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
P
CategoryTheory.Limits.prod
p
CategoryTheory.Limits.prod.fst
p₀
CategoryTheory.Limits.limit.lift_π
p_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
P
CategoryTheory.Limits.prod
p
CategoryTheory.Limits.prod.fst
p₀
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
p_fst
p_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
P
CategoryTheory.Limits.prod
p
CategoryTheory.Limits.prod.snd
p₁
CategoryTheory.Limits.limit.lift_π
p_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
P
CategoryTheory.Limits.prod
p
CategoryTheory.Limits.prod.snd
p₁
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
p_snd
symm_P 📖mathematicalP
symm
symm_p 📖mathematicalp
symm
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
P
CategoryTheory.Limits.prod
CategoryTheory.Iso.hom
CategoryTheory.Limits.prod.braiding
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.prod.comp_lift
p_snd
p_fst
symm_p_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
P
symm
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
p
CategoryTheory.Iso.hom
CategoryTheory.Limits.prod.braiding
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
symm_p
symm_p₀ 📖mathematicalp₀
symm
p₁
symm_p₁ 📖mathematicalp₁
symm
p₀
symm_ι 📖mathematicalι
symm
trans_P 📖mathematicalP
trans
CategoryTheory.Limits.pullback
p₁
p₀
trans_p₀ 📖mathematicalp₀
trans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
P
p₁
CategoryTheory.Limits.pullback.fst
trans_p₁ 📖mathematicalp₁
trans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
P
p₀
CategoryTheory.Limits.pullback.snd
trans_ι 📖mathematicalι
trans
CategoryTheory.Limits.pullback.lift
P
p₁
p₀
ι_p₀ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
P
ι
p₀
CategoryTheory.CategoryStruct.id
ι_p₀_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
P
ι
p₀
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
ι_p₀
ι_p₁ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
P
ι
p₁
CategoryTheory.CategoryStruct.id
ι_p₁_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
P
ι
p₁
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
ι_p₁

---

← Back to Index