| Name | Category | Theorems |
P 📖 | CompOp | 41 mathmath: HomotopicalAlgebra.PathObject.weakEquivalence_ι, p_fst_assoc, p_snd, trans_p₀, trans_P, HomotopicalAlgebra.PathObject.instFibrationP₀, ι_p₁_assoc, symm_p, p_fst, trans_p₁, RightHomotopy.refl_h, HomotopicalAlgebra.PathObject.symm_p_assoc, HomotopicalAlgebra.PathObject.symm_p, HomotopicalAlgebra.PathObject.IsVeryGood.cofibration_ι, HomotopicalAlgebra.PathObject.instIsCofibrantPOfFactorizationDataOfIsStableUnderCompositionCofibrations, RightHomotopy.precomp_h, HomotopicalAlgebra.PathObject.instIsFibrantP, HomotopicalAlgebra.PathObject.trans_p₀, symm_P, HomotopicalAlgebra.PathObject.instFibrationP₁, HomotopicalAlgebra.PathObject.ofFactorizationData_P, symm_p_assoc, HomotopicalAlgebra.PathObject.trans_ι, RightHomotopy.h₀, HomotopicalAlgebra.PathObject.symm_P, p_snd_assoc, RightHomotopy.h₀_assoc, ι_p₀, HomotopicalAlgebra.PathObject.instIsCofibrantPOfIsVeryGood, HomotopicalAlgebra.PathObject.instWeakEquivalenceP₁, HomotopicalAlgebra.PathObject.IsGood.fibration_p, RightHomotopy.h₁, RightHomotopy.h₁_assoc, HomotopicalAlgebra.PathObject.RightHomotopy.homotopy_extension, HomotopicalAlgebra.PathObject.instWeakEquivalenceP₀, ι_p₁, ι_p₀_assoc, HomotopicalAlgebra.PathObject.trans_p₁, RightHomotopy.trans_h, HomotopicalAlgebra.PathObject.trans_P, trans_ι
|
p 📖 | CompOp | 10 mathmath: p_fst_assoc, p_snd, symm_p, p_fst, HomotopicalAlgebra.PathObject.ofFactorizationData_p, HomotopicalAlgebra.PathObject.symm_p_assoc, HomotopicalAlgebra.PathObject.symm_p, symm_p_assoc, p_snd_assoc, HomotopicalAlgebra.PathObject.IsGood.fibration_p
|
p₀ 📖 | CompOp | 22 mathmath: p_fst_assoc, HomotopicalAlgebra.PathObject.symm_p₁, trans_p₀, trans_P, HomotopicalAlgebra.PathObject.instFibrationP₀, HomotopicalAlgebra.PathObject.symm_p₀, p_fst, trans_p₁, symm_p₁, HomotopicalAlgebra.PathObject.trans_p₀, HomotopicalAlgebra.PathObject.trans_ι, RightHomotopy.h₀, symm_p₀, RightHomotopy.h₀_assoc, HomotopicalAlgebra.PathObject.ofFactorizationData_p₀, ι_p₀, HomotopicalAlgebra.PathObject.instWeakEquivalenceP₀, ι_p₀_assoc, HomotopicalAlgebra.PathObject.trans_p₁, RightHomotopy.trans_h, HomotopicalAlgebra.PathObject.trans_P, trans_ι
|
p₁ 📖 | CompOp | 22 mathmath: HomotopicalAlgebra.PathObject.symm_p₁, p_snd, trans_p₀, trans_P, HomotopicalAlgebra.PathObject.symm_p₀, ι_p₁_assoc, trans_p₁, symm_p₁, HomotopicalAlgebra.PathObject.ofFactorizationData_p₁, HomotopicalAlgebra.PathObject.trans_p₀, HomotopicalAlgebra.PathObject.instFibrationP₁, HomotopicalAlgebra.PathObject.trans_ι, p_snd_assoc, symm_p₀, HomotopicalAlgebra.PathObject.instWeakEquivalenceP₁, RightHomotopy.h₁, RightHomotopy.h₁_assoc, ι_p₁, HomotopicalAlgebra.PathObject.trans_p₁, RightHomotopy.trans_h, HomotopicalAlgebra.PathObject.trans_P, trans_ι
|
trans 📖 | CompOp | 5 mathmath: trans_p₀, trans_P, trans_p₁, RightHomotopy.trans_h, trans_ι
|
ι 📖 | CompOp | 12 mathmath: HomotopicalAlgebra.PathObject.weakEquivalence_ι, ι_p₁_assoc, symm_ι, RightHomotopy.refl_h, HomotopicalAlgebra.PathObject.IsVeryGood.cofibration_ι, HomotopicalAlgebra.PathObject.symm_ι, HomotopicalAlgebra.PathObject.trans_ι, ι_p₀, HomotopicalAlgebra.PathObject.ofFactorizationData_ι, ι_p₁, ι_p₀_assoc, trans_ι
|