Documentation Verification Report

RightHomotopy

📁 Source: Mathlib/AlgebraicTopology/ModelCategory/RightHomotopy.lean

Statistics

MetricCount
DefinitionsRightHomotopy, precomp, refl, trans, RightHomotopy, h, precomp, refl, trans, RightHomotopyClass, mk, precomp, RightHomotopyRel
13
Theoremsexists_good_pathObject, homotopy_extension, rightHomotopyRel, weakEquivalence_iff, h₀, h₀_assoc, h₁, h₁_assoc, precomp_h, refl_h, symm_h, trans_h, mk_eq_mk_iff, mk_surjective, precomp_mk, sound, equivalence, exists_good_pathObject, exists_very_good_pathObject, factorsThroughLocalization, postcomp, precomp, refl, trans
24
Total37

HomotopicalAlgebra

Definitions

NameCategoryTheorems
RightHomotopyClass 📖CompOp
8 mathmath: BifibrantObject.HoCat.homEquivRight_apply, BifibrantObject.HoCat.homEquivLeft_symm_apply, leftHomotopyClassEquivRightHomotopyClass_symm_mk, RightHomotopyClass.mk_surjective, BifibrantObject.HoCat.homEquivRight_symm_apply, RightHomotopyClass.precomp_bijective_of_cofibration_of_weakEquivalence, RightHomotopyClass.precomp_bijective_of_weakEquivalence, leftHomotopyClassEquivRightHomotopyClass_mk
RightHomotopyRel 📖CompOp
10 mathmath: PathObject.RightHomotopy.rightHomotopyRel, RightHomotopyRel.factorsThroughLocalization, RightHomotopyRel.equivalence, RightHomotopyClass.whitehead, leftHomotopyRel_iff_rightHomotopyRel, RightHomotopyClass.mk_eq_mk_iff, BifibrantObject.homRel_iff_rightHomotopyRel, LeftHomotopyRel.rightHomotopyRel, RightHomotopyRel.refl, CofibrantObject.homRel_iff_rightHomotopyRel

HomotopicalAlgebra.PathObject

Definitions

NameCategoryTheorems
RightHomotopy 📖CompOp
3 mathmath: HomotopicalAlgebra.RightHomotopyRel.exists_very_good_pathObject, HomotopicalAlgebra.RightHomotopyRel.exists_good_pathObject, RightHomotopy.exists_good_pathObject

HomotopicalAlgebra.PathObject.RightHomotopy

Definitions

NameCategoryTheorems
precomp 📖CompOp
refl 📖CompOp
trans 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
exists_good_pathObject 📖mathematicalHomotopicalAlgebra.PathObject.IsGood
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
HomotopicalAlgebra.PathObject.RightHomotopy
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
HomotopicalAlgebra.ModelCategory.cm5a
CategoryTheory.Category.assoc
CategoryTheory.MorphismProperty.MapFactorizationData.fac_assoc
HomotopicalAlgebra.PrepathObject.p_fst
HomotopicalAlgebra.PrepathObject.ι_p₀
HomotopicalAlgebra.PrepathObject.p_snd
HomotopicalAlgebra.PrepathObject.ι_p₁
HomotopicalAlgebra.instWeakEquivalenceCompOfIsStableUnderCompositionWeakEquivalences
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toIsStableUnderComposition
HomotopicalAlgebra.ModelCategory.cm2
HomotopicalAlgebra.PathObject.weakEquivalence_ι
HomotopicalAlgebra.instWeakEquivalenceITrivialCofibrationsFibrations
HomotopicalAlgebra.fibration_iff
CategoryTheory.Limits.prod.hom_ext
CategoryTheory.MorphismProperty.MapFactorizationData.hp
HomotopicalAlgebra.PrepathObject.RightHomotopy.h₀
HomotopicalAlgebra.PrepathObject.RightHomotopy.h₁
homotopy_extension 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
HomotopicalAlgebra.PrepathObject.P
HomotopicalAlgebra.PathObject.toPrepathObject
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
HomotopicalAlgebra.PrepathObject.RightHomotopy.h
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
HomotopicalAlgebra.PrepathObject.RightHomotopy.h₀
CategoryTheory.sq_hasLift_of_hasLiftingProperty
HomotopicalAlgebra.ModelCategory.cm4b
HomotopicalAlgebra.PathObject.instFibrationP₀
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
HomotopicalAlgebra.instIsMultiplicativeFibrations
HomotopicalAlgebra.ModelCategory.instIsWeakFactorizationSystemTrivialCofibrationsFibrations
HomotopicalAlgebra.instIsStableUnderBaseChangeFibrations
HomotopicalAlgebra.PathObject.instWeakEquivalenceP₀
HomotopicalAlgebra.ModelCategory.cm2
CategoryTheory.MorphismProperty.IsMultiplicative.toContainsIdentities
HomotopicalAlgebra.instIsMultiplicativeWeakEquivalencesOfIsWeakFactorizationSystemTrivialCofibrationsFibrationsOfIsStableUnderRetractsOfIsStableUnderComposition
HomotopicalAlgebra.ModelCategory.cm3a
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toIsStableUnderComposition
CategoryTheory.CommSq.fac_right
CategoryTheory.CommSq.fac_left
rightHomotopyRel 📖mathematicalHomotopicalAlgebra.RightHomotopyRel
weakEquivalence_iff 📖mathematicalHomotopicalAlgebra.WeakEquivalenceHomotopicalAlgebra.weakEquivalence_of_postcomp_of_fac
HomotopicalAlgebra.PrepathObject.RightHomotopy.h₀
HomotopicalAlgebra.PathObject.instWeakEquivalenceP₀
HomotopicalAlgebra.PrepathObject.RightHomotopy.h₁
HomotopicalAlgebra.instWeakEquivalenceCompOfIsStableUnderCompositionWeakEquivalences
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toIsStableUnderComposition
HomotopicalAlgebra.PathObject.instWeakEquivalenceP₁

HomotopicalAlgebra.PrepathObject

Definitions

NameCategoryTheorems
RightHomotopy 📖CompData

HomotopicalAlgebra.PrepathObject.RightHomotopy

Definitions

NameCategoryTheorems
h 📖CompOp
9 mathmath: refl_h, precomp_h, h₀, h₀_assoc, h₁, h₁_assoc, symm_h, HomotopicalAlgebra.PathObject.RightHomotopy.homotopy_extension, trans_h
precomp 📖CompOp
1 mathmath: precomp_h
refl 📖CompOp
1 mathmath: refl_h
trans 📖CompOp
1 mathmath: trans_h

Theorems

NameKindAssumesProvesValidatesDepends On
h₀ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomotopicalAlgebra.PrepathObject.P
h
HomotopicalAlgebra.PrepathObject.p₀
h₀_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomotopicalAlgebra.PrepathObject.P
h
HomotopicalAlgebra.PrepathObject.p₀
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
h₀
h₁ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomotopicalAlgebra.PrepathObject.P
h
HomotopicalAlgebra.PrepathObject.p₁
h₁_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomotopicalAlgebra.PrepathObject.P
h
HomotopicalAlgebra.PrepathObject.p₁
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
h₁
precomp_h 📖mathematicalh
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
precomp
HomotopicalAlgebra.PrepathObject.P
refl_h 📖mathematicalh
refl
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomotopicalAlgebra.PrepathObject.P
HomotopicalAlgebra.PrepathObject.ι
symm_h 📖mathematicalh
HomotopicalAlgebra.PrepathObject.symm
symm
trans_h 📖mathematicalh
HomotopicalAlgebra.PrepathObject.trans
trans
CategoryTheory.Limits.pullback.lift
HomotopicalAlgebra.PrepathObject.P
HomotopicalAlgebra.PrepathObject.p₁
HomotopicalAlgebra.PrepathObject.p₀

HomotopicalAlgebra.RightHomotopyClass

Definitions

NameCategoryTheorems
mk 📖CompOp
precomp 📖CompOp
3 mathmath: precomp_mk, precomp_bijective_of_cofibration_of_weakEquivalence, precomp_bijective_of_weakEquivalence

Theorems

NameKindAssumesProvesValidatesDepends On
mk_eq_mk_iff 📖mathematicalHomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
HomotopicalAlgebra.RightHomotopyRel
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
Equivalence.eqvGen_iff
HomotopicalAlgebra.RightHomotopyRel.equivalence
Quot.eq
mk_surjective 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomotopicalAlgebra.RightHomotopyClass
Quot.mk_surjective
precomp_mk 📖mathematicalprecomp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
sound 📖HomotopicalAlgebra.RightHomotopyRel

HomotopicalAlgebra.RightHomotopyRel

Theorems

NameKindAssumesProvesValidatesDepends On
equivalence 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomotopicalAlgebra.RightHomotopyRel
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
refl
symm
trans
exists_good_pathObject 📖mathematicalHomotopicalAlgebra.RightHomotopyRel
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
HomotopicalAlgebra.PathObject.IsGood
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
HomotopicalAlgebra.PathObject.RightHomotopy
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
HomotopicalAlgebra.PathObject.RightHomotopy.exists_good_pathObject
exists_very_good_pathObject 📖mathematicalHomotopicalAlgebra.RightHomotopyRel
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
HomotopicalAlgebra.PathObject.IsVeryGood
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
HomotopicalAlgebra.ModelCategory.categoryWithFibrations
HomotopicalAlgebra.ModelCategory.categoryWithCofibrations
HomotopicalAlgebra.PathObject.RightHomotopy
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
exists_good_pathObject
HomotopicalAlgebra.ModelCategory.cm5b
CategoryTheory.MorphismProperty.MapFactorizationData.fac_assoc
HomotopicalAlgebra.PrepathObject.ι_p₀
HomotopicalAlgebra.PrepathObject.ι_p₁
HomotopicalAlgebra.weakEquivalence_of_postcomp_of_fac
HomotopicalAlgebra.ModelCategory.cm2
CategoryTheory.MorphismProperty.MapFactorizationData.fac
HomotopicalAlgebra.instWeakEquivalencePCofibrationsTrivialFibrations
HomotopicalAlgebra.PathObject.weakEquivalence_ι
CategoryTheory.Limits.prod.hom_ext
HomotopicalAlgebra.PrepathObject.p_fst
CategoryTheory.Category.assoc
HomotopicalAlgebra.PrepathObject.p_snd
HomotopicalAlgebra.instFibrationCompOfIsStableUnderCompositionFibrations
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
HomotopicalAlgebra.instIsMultiplicativeFibrations
HomotopicalAlgebra.ModelCategory.instIsWeakFactorizationSystemTrivialCofibrationsFibrations
HomotopicalAlgebra.instFibrationPCofibrationsTrivialFibrations
HomotopicalAlgebra.PathObject.IsGood.fibration_p
CategoryTheory.Limits.initial.to_comp
HomotopicalAlgebra.instCofibrationICofibrationsTrivialFibrations
CategoryTheory.sq_hasLift_of_hasLiftingProperty
HomotopicalAlgebra.ModelCategory.cm4b
CategoryTheory.CommSq.fac_right_assoc
HomotopicalAlgebra.PrepathObject.RightHomotopy.h₀
HomotopicalAlgebra.PrepathObject.RightHomotopy.h₁
factorsThroughLocalization 📖mathematicalHomRel.FactorsThroughLocalization
HomotopicalAlgebra.RightHomotopyRel
HomotopicalAlgebra.weakEquivalences
CategoryTheory.areEqualizedByLocalization_iff
CategoryTheory.Functor.q_isLocalization
CategoryTheory.Localization.inverts
HomotopicalAlgebra.weakEquivalence_iff
HomotopicalAlgebra.PathObject.weakEquivalence_ι
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Functor.map_comp
HomotopicalAlgebra.PrepathObject.ι_p₀
CategoryTheory.Functor.map_id
HomotopicalAlgebra.PrepathObject.ι_p₁
HomotopicalAlgebra.PrepathObject.RightHomotopy.h₀
HomotopicalAlgebra.PrepathObject.RightHomotopy.h₁
postcomp 📖mathematicalHomotopicalAlgebra.RightHomotopyRel
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
HomotopicalAlgebra.ModelCategory.cm1b
Finite.of_fintype
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
exists_very_good_pathObject
HomotopicalAlgebra.PathObject.exists_very_good
CategoryTheory.Category.assoc
CategoryTheory.Limits.prod.comp_lift
HomotopicalAlgebra.PrepathObject.ι_p₀_assoc
HomotopicalAlgebra.PrepathObject.ι_p₁_assoc
CategoryTheory.Limits.prod.hom_ext
HomotopicalAlgebra.PrepathObject.p_fst
HomotopicalAlgebra.PrepathObject.ι_p₀
CategoryTheory.Category.comp_id
CategoryTheory.Limits.limit.lift_π
HomotopicalAlgebra.PrepathObject.p_snd
HomotopicalAlgebra.PrepathObject.ι_p₁
CategoryTheory.sq_hasLift_of_hasLiftingProperty
HomotopicalAlgebra.ModelCategory.cm4a
HomotopicalAlgebra.PathObject.IsVeryGood.cofibration_ι
HomotopicalAlgebra.PathObject.weakEquivalence_ι
HomotopicalAlgebra.PathObject.IsGood.fibration_p
HomotopicalAlgebra.PathObject.IsVeryGood.toIsGood
CategoryTheory.eq_whisker
CategoryTheory.CommSq.fac_right
CategoryTheory.Limits.prod.lift_fst
HomotopicalAlgebra.PrepathObject.RightHomotopy.h₀_assoc
CategoryTheory.Limits.prod.lift_snd
HomotopicalAlgebra.PrepathObject.RightHomotopy.h₁_assoc
precomp 📖mathematicalHomotopicalAlgebra.RightHomotopyRelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomotopicalAlgebra.PathObject.RightHomotopy.rightHomotopyRel
refl 📖mathematicalHomotopicalAlgebra.RightHomotopyRel
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
HomotopicalAlgebra.PathObject.instNonempty
trans 📖HomotopicalAlgebra.RightHomotopyRel
HomotopicalAlgebra.ModelCategory.categoryWithWeakEquivalences
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
HomotopicalAlgebra.ModelCategory.cm1a
Finite.of_fintype
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
exists_good_pathObject
HomotopicalAlgebra.PathObject.RightHomotopy.rightHomotopyRel
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits

---

← Back to Index