Documentation Verification Report

MooreComplex

📁 Source: Mathlib/AlgebraicTopology/MooreComplex.lean

Statistics

MetricCount
Definitionsmap, obj, objD, objX, normalizedMooreComplex
5
Theoremsd_squared, map_f, objX_add_one, objX_zero, obj_X, obj_d, normalizedMooreComplex_map, normalizedMooreComplex_obj, normalizedMooreComplex_objD
9
Total14

AlgebraicTopology

Definitions

NameCategoryTheorems
normalizedMooreComplex 📖CompOp
15 mathmath: DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap, DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_inv, DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyHomInvId, DoldKan.inclusionOfMooreComplexMap_comp_PInfty_assoc, inclusionOfMooreComplex_app, DoldKan.inclusionOfMooreComplexMap_comp_PInfty, normalizedMooreComplex_objD, normalizedMooreComplex_map, DoldKan.instMonoChainComplexNatInclusionOfMooreComplexMap, DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyInvHomId, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, inclusionOfMooreComplexMap_f, DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_hom, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, normalizedMooreComplex_obj

Theorems

NameKindAssumesProvesValidatesDepends On
normalizedMooreComplex_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
normalizedMooreComplex
NormalizedMooreComplex.map
AddRightCancelSemigroup.toIsRightCancelAdd
normalizedMooreComplex_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
normalizedMooreComplex
NormalizedMooreComplex.obj
AddRightCancelSemigroup.toIsRightCancelAdd
normalizedMooreComplex_objD 📖mathematicalHomologicalComplex.d
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
HomologicalComplex.instCategory
normalizedMooreComplex
NormalizedMooreComplex.objD
ChainComplex.of_d
NormalizedMooreComplex.d_squared

AlgebraicTopology.NormalizedMooreComplex

Definitions

NameCategoryTheorems
map 📖CompOp
4 mathmath: AlgebraicTopology.normalizedMooreComplex_map, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality_assoc, map_f, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality
obj 📖CompOp
13 mathmath: AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex, obj_d, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_f, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality_assoc, map_f, obj_X, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap_assoc, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex_assoc, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, AlgebraicTopology.normalizedMooreComplex_obj
objD 📖CompOp
2 mathmath: AlgebraicTopology.normalizedMooreComplex_objD, d_squared
objX 📖CompOp
9 mathmath: obj_d, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_f, d_squared, map_f, obj_X, objX_add_one, objX_zero, AlgebraicTopology.inclusionOfMooreComplexMap_f, AlgebraicTopology.DoldKan.factors_normalizedMooreComplex_PInfty

Theorems

NameKindAssumesProvesValidatesDepends On
d_squared 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
objX
objD
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Abelian.hasPullbacks
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Subobject.factorThru_arrow_assoc
CategoryTheory.Category.assoc
CategoryTheory.SimplicialObject.δ_comp_δ_assoc
CategoryTheory.Subobject.finset_inf_arrow_factors
CategoryTheory.Subobject.factorThru_arrow
CategoryTheory.Limits.kernelSubobject_arrow_comp_assoc
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
CategoryTheory.Subobject.factors_of_factors_right
CategoryTheory.Subobject.factorThru_right
CategoryTheory.Subobject.factorThru_eq_zero
CategoryTheory.SimplicialObject.δ_comp_δ
map_f 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
obj
map
CategoryTheory.Subobject.factorThru
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
objX
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Subobject.arrow
CategoryTheory.NatTrans.app
AddRightCancelSemigroup.toIsRightCancelAdd
objX_add_one 📖mathematicalobjX
Finset.inf
CategoryTheory.Subobject
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.Subobject.semilatticeInf
CategoryTheory.Abelian.hasPullbacks
CategoryTheory.Subobject.orderTop
Finset.univ
Fin.fintype
CategoryTheory.Limits.kernelSubobject
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.SimplicialObject.δ
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
objX_zero 📖mathematicalobjX
Top.top
CategoryTheory.Subobject
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.orderTop
obj_X 📖mathematicalHomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
obj
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
objX
AddRightCancelSemigroup.toIsRightCancelAdd
obj_d 📖mathematicalHomologicalComplex.d
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
obj
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
objX
CategoryTheory.CategoryStruct.comp
Finset.inf
CategoryTheory.Subobject.semilatticeInf
CategoryTheory.Abelian.hasPullbacks
CategoryTheory.Subobject.orderTop
Finset.univ
Fin.fintype
CategoryTheory.Limits.kernelSubobject
CategoryTheory.SimplicialObject.δ
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.eqToHom
Top.top
OrderTop.toTop
Preorder.toLE
CategoryTheory.Subobject.arrow
CategoryTheory.inv
CategoryTheory.Subobject.factorThru
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd

---

← Back to Index