Documentation Verification Report

TwoTruncated

📁 Source: Mathlib/AlgebraicTopology/Quasicategory/TwoTruncated.lean

Statistics

MetricCount
DefinitionsofHomotopyCategory₂Fac, comp, compStruct, HomotopicL, HomotopicR, HomotopyCategory₂, homMk, instCategoryStruct, pt, Quasicategory₂, instCategoryHomotopyCategory₂, instSetoidEdge
12
Theoremscomp_unique, homotopyCategory₂_fac, nonempty_iff, congr_homotopyCategory₂HomMk, homotopicR, refl, trans, congr_homotopyCategory₂HomMk, homotopicL, refl, trans, homMk_id, homMk_surjective, mk_surjective, fill21, fill31, fill32, homotopicL_iff_homotopicR
18
Total30

SSet.Truncated

Definitions

NameCategoryTheorems
HomotopicL 📖MathDef
6 mathmath: HomotopicL.refl, Edge.CompStruct.comp_unique, homotopicL_iff_homotopicR, HomotopicL.symm, HomotopicR.homotopicL, HomotopicL.trans
HomotopicR 📖MathDef
5 mathmath: HomotopicR.trans, HomotopicL.homotopicR, homotopicL_iff_homotopicR, HomotopicR.symm, HomotopicR.refl
HomotopyCategory₂ 📖CompData
5 mathmath: HomotopyCategory₂.mk_surjective, Edge.CompStruct.nonempty_iff, HomotopyCategory₂.homMk_surjective, HomotopyCategory₂.homMk_id, Edge.CompStruct.homotopyCategory₂_fac
Quasicategory₂ 📖CompData—
instCategoryHomotopyCategory₂ 📖CompOp—
instSetoidEdge 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
homotopicL_iff_homotopicR 📖mathematical—HomotopicL
HomotopicR
—HomotopicL.homotopicR
HomotopicR.homotopicL

SSet.Truncated.Edge

Definitions

NameCategoryTheorems
comp 📖CompOp—
compStruct 📖CompOp—

SSet.Truncated.Edge.CompStruct

Definitions

NameCategoryTheorems
ofHomotopyCategory₂Fac 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
comp_unique 📖mathematical—SSet.Truncated.HomotopicL—SSet.Truncated.HomotopicL.homotopicR
SSet.Truncated.Quasicategory₂.fill32
SSet.Truncated.Quasicategory₂.fill31
homotopyCategory₂_fac 📖mathematical—CategoryTheory.CategoryStruct.comp
SSet.Truncated.HomotopyCategory₂
SSet.Truncated.HomotopyCategory₂.instCategoryStruct
SSet.Truncated.HomotopyCategory₂.homMk
—SSet.Truncated.HomotopicL.congr_homotopyCategory₂HomMk
comp_unique
SSet.Truncated.HomotopicL.refl
nonempty_iff 📖mathematical—SSet.Truncated.Edge.CompStruct
CategoryTheory.CategoryStruct.comp
SSet.Truncated.HomotopyCategory₂
SSet.Truncated.HomotopyCategory₂.instCategoryStruct
SSet.Truncated.HomotopyCategory₂.homMk
—homotopyCategory₂_fac

SSet.Truncated.HomotopicL

Theorems

NameKindAssumesProvesValidatesDepends On
congr_homotopyCategory₂HomMk 📖mathematical—SSet.Truncated.HomotopyCategory₂.homMk——
homotopicR 📖mathematical—SSet.Truncated.HomotopicR—SSet.Truncated.Quasicategory₂.fill32
refl 📖mathematical—SSet.Truncated.HomotopicL——
trans 📖mathematical—SSet.Truncated.HomotopicL—SSet.Truncated.Quasicategory₂.fill32

SSet.Truncated.HomotopicR

Theorems

NameKindAssumesProvesValidatesDepends On
congr_homotopyCategory₂HomMk 📖mathematical—SSet.Truncated.HomotopyCategory₂.homMk—homotopicL
homotopicL 📖mathematical—SSet.Truncated.HomotopicL—SSet.Truncated.Quasicategory₂.fill31
refl 📖mathematical—SSet.Truncated.HomotopicR——
trans 📖mathematical—SSet.Truncated.HomotopicR—SSet.Truncated.Quasicategory₂.fill31

SSet.Truncated.HomotopyCategory₂

Definitions

NameCategoryTheorems
homMk 📖CompOp
6 mathmath: SSet.Truncated.HomotopicR.congr_homotopyCategory₂HomMk, SSet.Truncated.Edge.CompStruct.nonempty_iff, homMk_surjective, homMk_id, SSet.Truncated.HomotopicL.congr_homotopyCategory₂HomMk, SSet.Truncated.Edge.CompStruct.homotopyCategory₂_fac
instCategoryStruct 📖CompOp
4 mathmath: SSet.Truncated.Edge.CompStruct.nonempty_iff, homMk_surjective, homMk_id, SSet.Truncated.Edge.CompStruct.homotopyCategory₂_fac
pt 📖CompOp
1 mathmath: homMk_id

Theorems

NameKindAssumesProvesValidatesDepends On
homMk_id 📖mathematical—homMk
pt
SSet.Truncated.Edge.id
CategoryTheory.CategoryStruct.id
SSet.Truncated.HomotopyCategory₂
instCategoryStruct
——
homMk_surjective 📖mathematical—SSet.Truncated.Edge
Quiver.Hom
SSet.Truncated.HomotopyCategory₂
CategoryTheory.CategoryStruct.toQuiver
instCategoryStruct
homMk
—Quotient.mk_surjective
mk_surjective 📖mathematical—CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
SSet.Truncated.HomotopyCategory₂
——

SSet.Truncated.Quasicategory₂

Theorems

NameKindAssumesProvesValidatesDepends On
fill21 📖mathematical—SSet.Truncated.Edge
SSet.Truncated.Edge.CompStruct
——
fill31 📖mathematical—SSet.Truncated.Edge.CompStruct——
fill32 📖mathematical—SSet.Truncated.Edge.CompStruct——

---

← Back to Index