Documentation Verification Report

AttachCells

šŸ“ Source: Mathlib/AlgebraicTopology/RelativeCellComplex/AttachCells.lean

Statistics

MetricCount
DefinitionsAttachCells, cell, cofan₁, cofanā‚‚, g₁, gā‚‚, isColimit₁, isColimitā‚‚, m, ofArrowIso, reindex, reindexCellTypes, ι, Ļ€
14
Theoremscell_def, cell_def_assoc, hm, hm_assoc, hom_ext, isPushout, ofArrowIso_cofan₁, ofArrowIso_cofanā‚‚, ofArrowIso_g₁, ofArrowIso_gā‚‚, ofArrowIso_isColimit₁, ofArrowIso_isColimitā‚‚, ofArrowIso_m, ofArrowIso_ι, ofArrowIso_Ļ€, pushouts_coproducts, reindex_cofan₁, reindex_cofanā‚‚, reindex_g₁, reindex_gā‚‚, reindex_isColimit₁, reindex_isColimitā‚‚, reindex_m, reindex_ι, reindex_Ļ€, nonempty_attachCells_iff
26
Total40

HomotopicalAlgebra

Definitions

NameCategoryTheorems
AttachCells šŸ“–CompData
1 mathmath: nonempty_attachCells_iff

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_attachCells_iff šŸ“–mathematical—AttachCells
CategoryTheory.MorphismProperty.pushouts
CategoryTheory.MorphismProperty.coproducts
CategoryTheory.MorphismProperty.ofHoms
—AttachCells.pushouts_coproducts
CategoryTheory.MorphismProperty.coproducts_iff
CategoryTheory.MorphismProperty.ofHoms_iff
CategoryTheory.Category.comp_id
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.Category.assoc
CategoryTheory.Limits.IsColimit.fac
CategoryTheory.Arrow.w_mk_right_assoc

HomotopicalAlgebra.AttachCells

Definitions

NameCategoryTheorems
cell šŸ“–CompOp
2 mathmath: cell_def, cell_def_assoc
cofan₁ šŸ“–CompOp
8 mathmath: hm_assoc, reindex_cofan₁, ofArrowIso_cofan₁, isPushout, CategoryTheory.SmallObject.attachCellsιFunctorObj_cofan₁, ofArrowIso_g₁, reindex_isColimit₁, hm
cofanā‚‚ šŸ“–CompOp
10 mathmath: ofArrowIso_gā‚‚, cell_def, hm_assoc, CategoryTheory.SmallObject.attachCellsιFunctorObj_cofanā‚‚, reindex_cofanā‚‚, cell_def_assoc, isPushout, ofArrowIso_cofanā‚‚, reindex_isColimitā‚‚, hm
g₁ šŸ“–CompOp
4 mathmath: CategoryTheory.SmallObject.attachCellsιFunctorObj_g₁, isPushout, reindex_g₁, ofArrowIso_g₁
gā‚‚ šŸ“–CompOp
6 mathmath: CategoryTheory.SmallObject.attachCellsιFunctorObj_gā‚‚, ofArrowIso_gā‚‚, cell_def, cell_def_assoc, reindex_gā‚‚, isPushout
isColimit₁ šŸ“–CompOp
3 mathmath: ofArrowIso_isColimit₁, CategoryTheory.SmallObject.attachCellsιFunctorObj_isColimit₁, reindex_isColimit₁
isColimitā‚‚ šŸ“–CompOp
3 mathmath: ofArrowIso_isColimitā‚‚, CategoryTheory.SmallObject.attachCellsιFunctorObj_isColimitā‚‚, reindex_isColimitā‚‚
m šŸ“–CompOp
6 mathmath: reindex_m, hm_assoc, CategoryTheory.SmallObject.attachCellsιFunctorObj_m, isPushout, ofArrowIso_m, hm
ofArrowIso šŸ“–CompOp
9 mathmath: ofArrowIso_isColimit₁, ofArrowIso_gā‚‚, ofArrowIso_isColimitā‚‚, ofArrowIso_Ļ€, ofArrowIso_cofan₁, ofArrowIso_cofanā‚‚, ofArrowIso_g₁, ofArrowIso_ι, ofArrowIso_m
reindex šŸ“–CompOp
9 mathmath: reindex_m, reindex_Ļ€, reindex_ι, reindex_cofanā‚‚, reindex_cofan₁, reindex_gā‚‚, reindex_g₁, reindex_isColimitā‚‚, reindex_isColimit₁
reindexCellTypes šŸ“–CompOp—
ι šŸ“–CompOp
16 mathmath: ofArrowIso_gā‚‚, cell_def, hm_assoc, CategoryTheory.SmallObject.instSmallιAttachCellsιFunctorObj, reindex_Ļ€, reindex_ι, reindex_cofanā‚‚, reindex_cofan₁, cell_def_assoc, isPushout, CategoryTheory.SmallObject.attachCellsιFunctorObj_ι, reindex_isColimitā‚‚, ofArrowIso_g₁, ofArrowIso_ι, reindex_isColimit₁, hm
Ļ€ šŸ“–CompOp
14 mathmath: ofArrowIso_gā‚‚, CategoryTheory.SmallObject.attachCellsιFunctorObj_Ļ€, cell_def, hm_assoc, reindex_Ļ€, ofArrowIso_Ļ€, reindex_cofanā‚‚, reindex_cofan₁, cell_def_assoc, isPushout, reindex_isColimitā‚‚, ofArrowIso_g₁, reindex_isColimit₁, hm

Theorems

NameKindAssumesProvesValidatesDepends On
cell_def šŸ“–mathematical—cell
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Ļ€
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
ι
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
cofanā‚‚
gā‚‚
——
cell_def_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Ļ€
cell
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
ι
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
cofanā‚‚
gā‚‚
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cell_def
hm šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Ļ€
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
ι
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
cofan₁
cofanā‚‚
m
——
hm_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Ļ€
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
ι
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
cofan₁
cofanā‚‚
m
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
hm
hom_ext šŸ“–ā€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Ļ€
cell
——CategoryTheory.IsPushout.hom_ext
isPushout
CategoryTheory.Limits.Cofan.IsColimit.hom_ext
CategoryTheory.Category.assoc
isPushout šŸ“–mathematical—CategoryTheory.IsPushout
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
ι
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
Ļ€
cofan₁
cofanā‚‚
g₁
m
gā‚‚
——
ofArrowIso_cofan₁ šŸ“–mathematical—cofan₁
ofArrowIso
——
ofArrowIso_cofanā‚‚ šŸ“–mathematical—cofanā‚‚
ofArrowIso
——
ofArrowIso_g₁ šŸ“–mathematical—g₁
ofArrowIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
ι
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
Ļ€
cofan₁
CategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Arrow.leftFunc
CategoryTheory.Iso.hom
——
ofArrowIso_gā‚‚ šŸ“–mathematical—gā‚‚
ofArrowIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
ι
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
Ļ€
cofanā‚‚
CategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Arrow.rightFunc
CategoryTheory.Iso.hom
——
ofArrowIso_isColimit₁ šŸ“–mathematical—isColimit₁
ofArrowIso
——
ofArrowIso_isColimitā‚‚ šŸ“–mathematical—isColimitā‚‚
ofArrowIso
——
ofArrowIso_m šŸ“–mathematical—m
ofArrowIso
——
ofArrowIso_ι šŸ“–mathematical—ι
ofArrowIso
——
ofArrowIso_Ļ€ šŸ“–mathematical—π
ofArrowIso
——
pushouts_coproducts šŸ“–mathematical—CategoryTheory.MorphismProperty.pushouts
CategoryTheory.MorphismProperty.coproducts
CategoryTheory.MorphismProperty.ofHoms
—CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.Limits.IsColimit.fac
hm
CategoryTheory.MorphismProperty.coproducts_iff
isPushout
reindex_cofan₁ šŸ“–mathematical—cofan₁
reindex
Ļ€
DFunLike.coe
Equiv
ι
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
——
reindex_cofanā‚‚ šŸ“–mathematical—cofanā‚‚
reindex
Ļ€
DFunLike.coe
Equiv
ι
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
——
reindex_g₁ šŸ“–mathematical—g₁
reindex
——
reindex_gā‚‚ šŸ“–mathematical—gā‚‚
reindex
——
reindex_isColimit₁ šŸ“–mathematical—isColimit₁
reindex
CategoryTheory.Limits.IsColimit.whiskerEquivalence
CategoryTheory.Discrete
ι
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
Ļ€
cofan₁
CategoryTheory.Discrete.equivalence
——
reindex_isColimitā‚‚ šŸ“–mathematical—isColimitā‚‚
reindex
CategoryTheory.Limits.IsColimit.whiskerEquivalence
CategoryTheory.Discrete
ι
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
Ļ€
cofanā‚‚
CategoryTheory.Discrete.equivalence
——
reindex_m šŸ“–mathematical—m
reindex
——
reindex_ι šŸ“–mathematical—ι
reindex
——
reindex_Ļ€ šŸ“–mathematical—π
reindex
DFunLike.coe
Equiv
ι
EquivLike.toFunLike
Equiv.instEquivLike
——

---

← Back to Index