Documentation Verification Report

Basic

📁 Source: Mathlib/AlgebraicTopology/RelativeCellComplex/Basic.lean

Statistics

MetricCount
DefinitionsRelativeCellComplex, Cells, i, j, k, ι, attachCells, toTransfiniteCompositionOfShape, transfiniteCompositionOfShape
9
Theoremshj, hom_ext, transfiniteCompositionOfShape_toTransfiniteCompositionOfShape
3
Total12

HomotopicalAlgebra

Definitions

NameCategoryTheorems
RelativeCellComplex 📖CompData

HomotopicalAlgebra.RelativeCellComplex

Definitions

NameCategoryTheorems
Cells 📖CompData
attachCells 📖CompOp
toTransfiniteCompositionOfShape 📖CompOp
5 mathmath: CategoryTheory.SmallObject.ιFunctorObj_eq, CategoryTheory.SmallObject.πFunctorObj_eq, CategoryTheory.MorphismProperty.IsCardinalForSmallObjectArgument.preservesColimit, CategoryTheory.SmallObject.preservesColimit, transfiniteCompositionOfShape_toTransfiniteCompositionOfShape
transfiniteCompositionOfShape 📖CompOp
1 mathmath: transfiniteCompositionOfShape_toTransfiniteCompositionOfShape

Theorems

NameKindAssumesProvesValidatesDepends On
hom_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Cells.j
Cells.i
Cells.ι
CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.TransfiniteCompositionOfShape.fac_assoc
IsMin.eq_bot
HomotopicalAlgebra.AttachCells.hom_ext
Order.le_succ
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.Category.id_comp
Cells.hj
CategoryTheory.Category.assoc
PrincipalSeg.monotone
CategoryTheory.TransfiniteCompositionOfShape.isWellOrderContinuous
transfiniteCompositionOfShape_toTransfiniteCompositionOfShape 📖mathematicalCategoryTheory.MorphismProperty.TransfiniteCompositionOfShape.toTransfiniteCompositionOfShape
CategoryTheory.MorphismProperty.pushouts
CategoryTheory.MorphismProperty.coproducts
CategoryTheory.MorphismProperty.ofHoms
transfiniteCompositionOfShape
toTransfiniteCompositionOfShape

HomotopicalAlgebra.RelativeCellComplex.Cells

Definitions

NameCategoryTheorems
i 📖CompOp
j 📖CompOp
1 mathmath: hj
k 📖CompOp
ι 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
hj 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
j

---

← Back to Index