| Name | Category | Theorems |
const 📖 | CompOp | 27 mathmath: eq_const_of_zero, const_eq_id, eq_of_one_to_two, const_comp, const_subinterval_eq, CategoryTheory.CosimplicialObject.augment_hom_app, SSet.spine_vertex, δ_zero_mkOfSucc, const_fac_thru_zero, eq_const_to_zero, Truncated.δ₂_zero_eq_const, δ_one_eq_const, eq_of_one_to_two', CategoryTheory.SimplicialObject.augment_hom_app, δ_zero_eq_const, SSet.const_app, SSet.Truncated.StrictSegal.spineToSimplex_vertex, Truncated.δ₂_one_eq_const, SSet.Truncated.spine_vertex, δ_one_mkOfSucc, mkOfLe_refl, const_apply, CategoryTheory.CosimplicialObject.equivalenceRightToLeft_right_app, eq_of_one_to_one, exists_eq_const_of_zero, CategoryTheory.SimplicialObject.equivalenceLeftToRight_left_app, SSet.StrictSegal.spineToSimplex_vertex
|
diag 📖 | CompOp | 1 mathmath: diag_subinterval_eq
|
factor_δ 📖 | CompOp | 1 mathmath: factor_δ_spec
|
instConcreteCategoryOrderHomFinHAddNatLenOfNat 📖 | CompOp | 8 mathmath: toTop_map, toTop₀_map, instReflectsIsomorphismsForgetOrderHomFinHAddNatLenOfNat, CategoryTheory.Limits.FormalCoproduct.cechFunctor_map_app, CategoryTheory.Limits.FormalCoproduct.cech_map, toType_apply, concreteCategoryHom_id, CategoryTheory.Limits.FormalCoproduct.cech_obj
|
instDecidableEqHom 📖 | CompOp | — |
instFintypeToTypeOrderHomFinHAddNatLenOfNat 📖 | CompOp | 5 mathmath: toTop_obj, toTop_map, toTop₀_map, toTop₀_obj, SSet.stdSimplex.face_obj
|
instOfNatToTypeOrderHomFinHAddNatLenOfNat 📖 | CompOp | 8 mathmath: CategoryTheory.CosimplicialObject.augment_hom_app, Truncated.δ₂_zero_eq_const, CategoryTheory.SimplicialObject.augment_hom_app, SSet.const_app, Truncated.δ₂_one_eq_const, CategoryTheory.Arrow.AugmentedCechNerve.ExtraDegeneracy.s_comp_π_0, CategoryTheory.SimplicialObject.equivalenceRightToLeft_left, CategoryTheory.CosimplicialObject.equivalenceLeftToRight_right
|
intervalEdge 📖 | CompOp | 4 mathmath: diag_subinterval_eq, SSet.StrictSegal.spineToSimplex_edge, SSet.Truncated.StrictSegal.spineToSimplex_edge, mkOfSucc_δ_eq
|
isTerminalZero 📖 | CompOp | — |
mkHom 📖 | CompOp | — |
mkOfLe 📖 | CompOp | 2 mathmath: SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₂, mkOfLe_refl
|
mkOfLeComp 📖 | CompOp | — |
mkOfSucc 📖 | CompOp | 18 mathmath: mkOfSucc_eq_id, SSet.StrictSegalCore.map_mkOfSucc_zero_concat, mkOfSucc_homToOrderHom_one, δ_zero_mkOfSucc, mkOfSucc_subinterval_eq, SSet.spine_arrow, mkOfSucc_δ_lt, mkOfSucc_homToOrderHom_zero, SSet.Truncated.spine_arrow, SSet.Truncated.StrictSegal.spineToSimplex_arrow, δ_one_mkOfSucc, mkOfSucc_δ_gt, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₁, SSet.StrictSegalCore.map_mkOfSucc_zero_spineToSimplex, SSet.StrictSegal.spineToSimplex_arrow, mkOfSucc_zero_eq_δ, mkOfSucc_δ_eq, mkOfSucc_one_eq_δ
|
orderIsoOfIso 📖 | CompOp | — |
skeletalEquivalence 📖 | CompOp | — |
skeletalFunctor 📖 | CompOp | 8 mathmath: SkeletalFunctor.instEssSurjNonemptyFinLinOrdSkeletalFunctor, isSkeletonOf, SkeletalFunctor.isEquivalence, skeletalFunctor_obj, SkeletalFunctor.instFaithfulNonemptyFinLinOrdSkeletalFunctor, skeletalFunctor_map, skeletalFunctor.coe_map, SkeletalFunctor.instFullNonemptyFinLinOrdSkeletalFunctor
|
subinterval 📖 | CompOp | 7 mathmath: SSet.spine_map_subinterval, const_subinterval_eq, mkOfSucc_subinterval_eq, SSet.Truncated.spine_map_subinterval, SSet.StrictSegal.spineToSimplex_interval, diag_subinterval_eq, SSet.Truncated.StrictSegal.spineToSimplex_interval
|
toCat 📖 | CompOp | 4 mathmath: toCat.obj_eq_Fin, CategoryTheory.nerve_map, toCat_obj, toCat_map
|
topIsoZero 📖 | CompOp | — |
uniqueHomToZero 📖 | CompOp | — |
δ 📖 | CompOp | 55 mathmath: δ_comp_δ', eq_of_one_to_two, δ_comp_δ'', δ_comp_σ_of_gt'_assoc, δ_comp_σ_self', δ_comp_δ_self', CategoryTheory.SimplicialObject.δ_def, II_σ, δ_comp_σ_self_assoc, δ_zero_mkOfSucc, δ_comp_σ_succ_assoc, δ_comp_δ_self, δ_comp_σ_of_gt', δ_one_eq_const, eq_of_one_to_two', mkOfSucc_δ_lt, AlgebraicTopology.DoldKan.Isδ₀.iff, SSet.Truncated.StrictSegal.spine_δ_arrow_lt, δ_comp_σ_of_le, factor_δ_spec, rev_map_δ, eq_comp_δ_of_not_surjective', SSet.Truncated.StrictSegal.spine_δ_arrow_gt, AlgebraicTopology.DoldKan.Isδ₀.eq_δ₀, δ_zero_eq_const, δ_comp_δ_self'_assoc, δ_comp_σ_of_gt, SSet.Truncated.StrictSegal.spine_δ_vertex_ge, δ_comp_δ, δ_injective, δ_comp_δ_self_assoc, SSet.Truncated.Path.arrow_src, SimplexCategoryGenRel.toSimplexCategory_map_δ, δ_one_mkOfSucc, mkOfSucc_δ_gt, δ_comp_σ_of_gt_assoc, δ_comp_σ_succ', SSet.Truncated.StrictSegal.spine_δ_arrow_eq, δ_comp_σ_self, SSet.Truncated.Path₁.arrow_tgt, δ_comp_σ_of_le_assoc, SSet.Truncated.Path.arrow_tgt, mkOfSucc_zero_eq_δ, mkOfSucc_δ_eq, δ_comp_σ_succ'_assoc, SSet.Truncated.Path₁.arrow_src, eq_δ_of_mono, SSet.Truncated.StrictSegal.spine_δ_vertex_lt, eq_comp_δ_of_not_surjective, mkOfSucc_one_eq_δ, δ_comp_σ_succ, SSet.stdSimplex.face_singleton_compl, AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀, instMonoδ, δ_comp_σ_self'_assoc
|
σ 📖 | CompOp | 25 mathmath: δ_comp_σ_of_gt'_assoc, δ_comp_σ_self', σ_injective, δ_comp_σ_self_assoc, δ_comp_σ_succ_assoc, δ_comp_σ_of_gt', eq_σ_comp_of_not_injective, SimplexCategoryGenRel.toSimplexCategory_map_σ, CategoryTheory.SimplicialObject.σ_def, δ_comp_σ_of_le, σ_comp_σ_assoc, rev_map_σ, δ_comp_σ_of_gt, eq_σ_of_epi, instEpiσ, eq_σ_comp_of_not_injective', δ_comp_σ_of_gt_assoc, δ_comp_σ_succ', δ_comp_σ_self, δ_comp_σ_of_le_assoc, δ_comp_σ_succ'_assoc, σ_comp_σ, II_δ, δ_comp_σ_succ, δ_comp_σ_self'_assoc
|