Documentation Verification Report

Basic

📁 Source: Mathlib/AlgebraicTopology/SimplexCategory/Basic.lean

Statistics

MetricCount
Definitionsconst, diag, factor_δ, instConcreteCategoryOrderHomFinHAddNatLenOfNat, instDecidableEqHom, instFintypeToTypeOrderHomFinHAddNatLenOfNat, instOfNatToTypeOrderHomFinHAddNatLenOfNat, intervalEdge, isTerminalZero, mkHom, mkOfLe, mkOfLeComp, mkOfSucc, orderIsoOfIso, skeletalEquivalence, skeletalFunctor, subinterval, toCat, topIsoZero, uniqueHomToZero, δ, σ
22
Theoremsext_one_left, ext_zero_left, instEssSurjNonemptyFinLinOrdSkeletalFunctor, instFaithfulNonemptyFinLinOrdSkeletalFunctor, instFullNonemptyFinLinOrdSkeletalFunctor, isEquivalence, concreteCategoryHom_id, congr_toOrderHom_apply, const_apply, const_comp, const_eq_id, const_fac_thru_zero, const_subinterval_eq, diag_subinterval_eq, epi_iff_surjective, eqToHom_toOrderHom, eq_comp_δ_of_not_surjective, eq_comp_δ_of_not_surjective', eq_const_of_zero, eq_const_to_zero, eq_id_of_epi, eq_id_of_isIso, eq_id_of_mono, eq_of_isIso, eq_of_one_to_one, eq_of_one_to_two, eq_of_one_to_two', eq_δ_of_mono, eq_σ_comp_of_not_injective, eq_σ_comp_of_not_injective', eq_σ_of_epi, exists_eq_const_of_zero, factorThruImage_eq, factor_δ_spec, hom_zero_zero, image_eq, image_ι_eq, instBalanced, instEpiFactorThruImage, instEpiσ, instFiniteHom, instHasStrongEpiImages, instHasStrongEpiMonoFactorisations, instHasTerminal, instMonoδ, instReflectsIsomorphismsForgetOrderHomFinHAddNatLenOfNat, instSplitEpiCategory, instSubsingletonHomMkOfNatNat, isIso_iff_of_epi, isIso_iff_of_mono, isIso_of_bijective, isSkeletonOf, iso_eq_iso_refl, le_of_epi, le_of_mono, len_eq_of_isIso, len_le_of_epi, len_le_of_mono, len_lt_of_mono, mkOfLe_refl, mkOfSucc_eq_id, mkOfSucc_homToOrderHom_one, mkOfSucc_homToOrderHom_zero, mkOfSucc_one_eq_δ, mkOfSucc_subinterval_eq, mkOfSucc_zero_eq_δ, mkOfSucc_δ_eq, mkOfSucc_δ_gt, mkOfSucc_δ_lt, mono_iff_injective, skeletal, coe_map, skeletalFunctor_map, skeletalFunctor_obj, obj_eq_Fin, toCat_map, toCat_obj, toType_apply, δ_comp_δ, δ_comp_δ', δ_comp_δ'', δ_comp_δ_self, δ_comp_δ_self', δ_comp_δ_self'_assoc, δ_comp_δ_self_assoc, δ_comp_σ_of_gt, δ_comp_σ_of_gt', δ_comp_σ_of_gt'_assoc, δ_comp_σ_of_gt_assoc, δ_comp_σ_of_le, δ_comp_σ_of_le_assoc, δ_comp_σ_self, δ_comp_σ_self', δ_comp_σ_self'_assoc, δ_comp_σ_self_assoc, δ_comp_σ_succ, δ_comp_σ_succ', δ_comp_σ_succ'_assoc, δ_comp_σ_succ_assoc, δ_injective, δ_one_eq_const, δ_one_mkOfSucc, δ_zero_eq_const, δ_zero_mkOfSucc, σ_comp_σ, σ_comp_σ_assoc, σ_injective
107
Total129

SimplexCategory

Definitions

NameCategoryTheorems
const 📖CompOp
27 mathmath: eq_const_of_zero, const_eq_id, eq_of_one_to_two, const_comp, const_subinterval_eq, CategoryTheory.CosimplicialObject.augment_hom_app, SSet.spine_vertex, δ_zero_mkOfSucc, const_fac_thru_zero, eq_const_to_zero, Truncated.δ₂_zero_eq_const, δ_one_eq_const, eq_of_one_to_two', CategoryTheory.SimplicialObject.augment_hom_app, δ_zero_eq_const, SSet.const_app, SSet.Truncated.StrictSegal.spineToSimplex_vertex, Truncated.δ₂_one_eq_const, SSet.Truncated.spine_vertex, δ_one_mkOfSucc, mkOfLe_refl, const_apply, CategoryTheory.CosimplicialObject.equivalenceRightToLeft_right_app, eq_of_one_to_one, exists_eq_const_of_zero, CategoryTheory.SimplicialObject.equivalenceLeftToRight_left_app, SSet.StrictSegal.spineToSimplex_vertex
diag 📖CompOp
1 mathmath: diag_subinterval_eq
factor_δ 📖CompOp
1 mathmath: factor_δ_spec
instConcreteCategoryOrderHomFinHAddNatLenOfNat 📖CompOp
8 mathmath: toTop_map, toTop₀_map, instReflectsIsomorphismsForgetOrderHomFinHAddNatLenOfNat, CategoryTheory.Limits.FormalCoproduct.cechFunctor_map_app, CategoryTheory.Limits.FormalCoproduct.cech_map, toType_apply, concreteCategoryHom_id, CategoryTheory.Limits.FormalCoproduct.cech_obj
instDecidableEqHom 📖CompOp
instFintypeToTypeOrderHomFinHAddNatLenOfNat 📖CompOp
5 mathmath: toTop_obj, toTop_map, toTop₀_map, toTop₀_obj, SSet.stdSimplex.face_obj
instOfNatToTypeOrderHomFinHAddNatLenOfNat 📖CompOp
8 mathmath: CategoryTheory.CosimplicialObject.augment_hom_app, Truncated.δ₂_zero_eq_const, CategoryTheory.SimplicialObject.augment_hom_app, SSet.const_app, Truncated.δ₂_one_eq_const, CategoryTheory.Arrow.AugmentedCechNerve.ExtraDegeneracy.s_comp_π_0, CategoryTheory.SimplicialObject.equivalenceRightToLeft_left, CategoryTheory.CosimplicialObject.equivalenceLeftToRight_right
intervalEdge 📖CompOp
4 mathmath: diag_subinterval_eq, SSet.StrictSegal.spineToSimplex_edge, SSet.Truncated.StrictSegal.spineToSimplex_edge, mkOfSucc_δ_eq
isTerminalZero 📖CompOp
mkHom 📖CompOp
mkOfLe 📖CompOp
2 mathmath: SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₂, mkOfLe_refl
mkOfLeComp 📖CompOp
mkOfSucc 📖CompOp
18 mathmath: mkOfSucc_eq_id, SSet.StrictSegalCore.map_mkOfSucc_zero_concat, mkOfSucc_homToOrderHom_one, δ_zero_mkOfSucc, mkOfSucc_subinterval_eq, SSet.spine_arrow, mkOfSucc_δ_lt, mkOfSucc_homToOrderHom_zero, SSet.Truncated.spine_arrow, SSet.Truncated.StrictSegal.spineToSimplex_arrow, δ_one_mkOfSucc, mkOfSucc_δ_gt, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₁, SSet.StrictSegalCore.map_mkOfSucc_zero_spineToSimplex, SSet.StrictSegal.spineToSimplex_arrow, mkOfSucc_zero_eq_δ, mkOfSucc_δ_eq, mkOfSucc_one_eq_δ
orderIsoOfIso 📖CompOp
skeletalEquivalence 📖CompOp
skeletalFunctor 📖CompOp
8 mathmath: SkeletalFunctor.instEssSurjNonemptyFinLinOrdSkeletalFunctor, isSkeletonOf, SkeletalFunctor.isEquivalence, skeletalFunctor_obj, SkeletalFunctor.instFaithfulNonemptyFinLinOrdSkeletalFunctor, skeletalFunctor_map, skeletalFunctor.coe_map, SkeletalFunctor.instFullNonemptyFinLinOrdSkeletalFunctor
subinterval 📖CompOp
7 mathmath: SSet.spine_map_subinterval, const_subinterval_eq, mkOfSucc_subinterval_eq, SSet.Truncated.spine_map_subinterval, SSet.StrictSegal.spineToSimplex_interval, diag_subinterval_eq, SSet.Truncated.StrictSegal.spineToSimplex_interval
toCat 📖CompOp
4 mathmath: toCat.obj_eq_Fin, CategoryTheory.nerve_map, toCat_obj, toCat_map
topIsoZero 📖CompOp
uniqueHomToZero 📖CompOp
δ 📖CompOp
55 mathmath: δ_comp_δ', eq_of_one_to_two, δ_comp_δ'', δ_comp_σ_of_gt'_assoc, δ_comp_σ_self', δ_comp_δ_self', CategoryTheory.SimplicialObject.δ_def, II_σ, δ_comp_σ_self_assoc, δ_zero_mkOfSucc, δ_comp_σ_succ_assoc, δ_comp_δ_self, δ_comp_σ_of_gt', δ_one_eq_const, eq_of_one_to_two', mkOfSucc_δ_lt, AlgebraicTopology.DoldKan.Isδ₀.iff, SSet.Truncated.StrictSegal.spine_δ_arrow_lt, δ_comp_σ_of_le, factor_δ_spec, rev_map_δ, eq_comp_δ_of_not_surjective', SSet.Truncated.StrictSegal.spine_δ_arrow_gt, AlgebraicTopology.DoldKan.Isδ₀.eq_δ₀, δ_zero_eq_const, δ_comp_δ_self'_assoc, δ_comp_σ_of_gt, SSet.Truncated.StrictSegal.spine_δ_vertex_ge, δ_comp_δ, δ_injective, δ_comp_δ_self_assoc, SSet.Truncated.Path.arrow_src, SimplexCategoryGenRel.toSimplexCategory_map_δ, δ_one_mkOfSucc, mkOfSucc_δ_gt, δ_comp_σ_of_gt_assoc, δ_comp_σ_succ', SSet.Truncated.StrictSegal.spine_δ_arrow_eq, δ_comp_σ_self, SSet.Truncated.Path₁.arrow_tgt, δ_comp_σ_of_le_assoc, SSet.Truncated.Path.arrow_tgt, mkOfSucc_zero_eq_δ, mkOfSucc_δ_eq, δ_comp_σ_succ'_assoc, SSet.Truncated.Path₁.arrow_src, eq_δ_of_mono, SSet.Truncated.StrictSegal.spine_δ_vertex_lt, eq_comp_δ_of_not_surjective, mkOfSucc_one_eq_δ, δ_comp_σ_succ, SSet.stdSimplex.face_singleton_compl, AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_δ₀, instMonoδ, δ_comp_σ_self'_assoc
σ 📖CompOp
25 mathmath: δ_comp_σ_of_gt'_assoc, δ_comp_σ_self', σ_injective, δ_comp_σ_self_assoc, δ_comp_σ_succ_assoc, δ_comp_σ_of_gt', eq_σ_comp_of_not_injective, SimplexCategoryGenRel.toSimplexCategory_map_σ, CategoryTheory.SimplicialObject.σ_def, δ_comp_σ_of_le, σ_comp_σ_assoc, rev_map_σ, δ_comp_σ_of_gt, eq_σ_of_epi, instEpiσ, eq_σ_comp_of_not_injective', δ_comp_σ_of_gt_assoc, δ_comp_σ_succ', δ_comp_σ_self, δ_comp_σ_of_le_assoc, δ_comp_σ_succ'_assoc, σ_comp_σ, II_δ, δ_comp_σ_succ, δ_comp_σ_self'_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
concreteCategoryHom_id 📖mathematicalCategoryTheory.ConcreteCategory.hom
SimplexCategory
smallCategory
OrderHom
len
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
instConcreteCategoryOrderHomFinHAddNatLenOfNat
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
OrderHom.id
congr_toOrderHom_apply 📖mathematicalDFunLike.coe
OrderHom
len
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
Hom.toOrderHom
const_apply 📖mathematicalDFunLike.coe
OrderHom
len
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
Hom.toOrderHom
const
const_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
const
DFunLike.coe
OrderHom
len
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
Hom.toOrderHom
const_eq_id 📖mathematicalconst
len
CategoryTheory.CategoryStruct.id
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
Hom.ext
OrderHom.ext
const_fac_thru_zero 📖mathematicalconst
CategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
len
const_comp
const_subinterval_eq 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
const
subinterval
len
lt_add_of_lt_add_right
Nat.instPreorder
covariant_swap_add_of_covariant_add
Preorder.toLE
Nat.instAddCommSemigroup
IsOrderedAddMonoid.toAddLeftMono
Nat.instAddCommMonoid
Nat.instPartialOrder
Nat.instIsOrderedAddMonoid
lt_add_of_lt_add_right
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
const_comp
add_comm
diag_subinterval_eq 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
diag
subinterval
intervalEdge
Hom.ext
OrderHom.ext
zero_add
epi_iff_surjective 📖mathematicalCategoryTheory.Epi
SimplexCategory
smallCategory
len
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
Hom.toOrderHom
CategoryTheory.Functor.epi_map_iff_epi
CategoryTheory.Functor.preservesEpimorphisms_of_isLeftAdjoint
CategoryTheory.Functor.isLeftAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_functor
CategoryTheory.reflectsEpimorphisms_of_reflectsColimitsOfShape
CategoryTheory.Limits.reflectsColimitsOfShape_of_reflectsColimits
CategoryTheory.Limits.fullyFaithful_reflectsColimits
CategoryTheory.Equivalence.full_functor
CategoryTheory.Equivalence.faithful_functor
CategoryTheory.ConcreteCategory.hom_ofHom
eqToHom_toOrderHom 📖mathematicalHom.toOrderHom
CategoryTheory.eqToHom
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
OrderEmbedding.toOrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
OrderIso.toOrderEmbedding
Fin.castOrderIso
len
eq_comp_δ_of_not_surjective 📖mathematicallen
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
Hom.toOrderHom
CategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
eq_comp_δ_of_not_surjective'
eq_comp_δ_of_not_surjective' 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
Hom.ext
OrderHom.ext
Fin.predAbove_right_last
Fin.predAbove_last_of_ne_last
Fin.succAbove_last
Fin.castSucc_castPred
Fin.succAbove_predAbove
eq_const_of_zero 📖mathematicalconst
DFunLike.coe
OrderHom
len
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
Hom.toOrderHom
Hom.ext
OrderHom.ext
eq_const_to_zero 📖mathematicalconst
len
Hom.ext
OrderHom.ext
eq_id_of_epi 📖mathematicalCategoryTheory.CategoryStruct.id
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
isIso_of_bijective
Fintype.bijective_iff_surjective_and_card
epi_iff_surjective
eq_id_of_isIso
eq_id_of_isIso 📖mathematicalCategoryTheory.CategoryStruct.id
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
iso_eq_iso_refl
eq_id_of_mono 📖mathematicalCategoryTheory.CategoryStruct.id
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
isIso_of_bijective
Fintype.bijective_iff_injective_and_card
mono_iff_injective
eq_id_of_isIso
eq_of_isIso 📖len_eq_of_isIso
eq_of_one_to_one 📖mathematicalconst
CategoryTheory.CategoryStruct.id
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
Hom.ext
OrderHom.ext
OrderHom.monotone
eq_of_one_to_two 📖mathematicalδ
const
OrderHom.monotone
Hom.ext
OrderHom.ext
eq_of_one_to_two' 📖mathematicalδ
const
eq_of_one_to_two
eq_δ_of_mono 📖mathematicalδeq_comp_δ_of_not_surjective
epi_iff_surjective
eq_id_of_mono
CategoryTheory.mono_of_mono
CategoryTheory.Category.id_comp
eq_σ_comp_of_not_injective 📖mathematicallen
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
Hom.toOrderHom
CategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
σ
LT.lt.ne
LE.le.trans_lt'
eq_σ_comp_of_not_injective'
le_antisymm
OrderHom.monotone
le_of_lt
Fin.castSucc_castPred
Fin.succ_castPred_le_iff
eq_σ_comp_of_not_injective' 📖mathematicalDFunLike.coe
OrderHom
len
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
Hom.toOrderHom
CategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
σ
Hom.ext
OrderHom.ext
Fin.predAbove_of_le_castSucc
Fin.succAbove_of_castSucc_lt
Fin.castSucc_lt_succ_iff
Fin.castSucc_castPred
Fin.ne_zero_of_lt
Fin.predAbove_of_castSucc_lt
Fin.succAbove_of_le_castSucc
eq_σ_of_epi 📖mathematicalσeq_σ_comp_of_not_injective
mono_iff_injective
eq_id_of_epi
CategoryTheory.epi_of_epi
CategoryTheory.Category.comp_id
exists_eq_const_of_zero 📖mathematicalconsteq_const_of_zero
factorThruImage_eq 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
CategoryTheory.Limits.image
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.factorThruImageCategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations
CategoryTheory.cancel_mono
image_ι_eq
CategoryTheory.Limits.image.fac
factor_δ_spec 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
factor_δ
δ
Hom.ext
OrderHom.ext
Fin.predAbove_right_zero
CategoryTheory.Category.assoc
Fin.predAbove_zero_of_ne_zero
Fin.succ_succAbove_predAbove
hom_zero_zero 📖mathematicalCategoryTheory.CategoryStruct.id
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
instSubsingletonHomMkOfNatNat
image_eq 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
CategoryTheory.Limits.image
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations
CategoryTheory.strongEpi_of_epi
CategoryTheory.strongEpiCategory_of_regularEpiCategory
CategoryTheory.regularEpiCategoryOfSplitEpiCategory
instSplitEpiCategory
ext
le_antisymm
len_le_of_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_hom
len_le_of_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
image_ι_eq 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
CategoryTheory.Limits.image
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.image.ιCategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations
CategoryTheory.strongEpi_of_epi
CategoryTheory.strongEpiCategory_of_regularEpiCategory
CategoryTheory.regularEpiCategoryOfSplitEpiCategory
instSplitEpiCategory
CategoryTheory.Limits.image.isoStrongEpiMono_hom_comp_ι
eq_id_of_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.id_comp
instBalanced 📖mathematicalCategoryTheory.Balanced
SimplexCategory
smallCategory
isIso_iff_of_epi
le_antisymm
len_le_of_mono
len_le_of_epi
instEpiFactorThruImage 📖mathematicalCategoryTheory.Epi
SimplexCategory
smallCategory
CategoryTheory.Limits.image
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.factorThruImage
CategoryTheory.StrongEpi.epi
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.HasStrongEpiImages.strong_factorThruImage
instHasStrongEpiImages
instEpiσ 📖mathematicalCategoryTheory.Epi
SimplexCategory
smallCategory
σ
Fin.predAbove_surjective
instFiniteHom 📖mathematicalFinite
Quiver.Hom
SimplexCategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
smallCategory
Finite.of_injective
Pi.finite
Finite.of_fintype
instHasStrongEpiImages 📖mathematicalCategoryTheory.Limits.HasStrongEpiImages
SimplexCategory
smallCategory
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.hasStrongEpiImages_of_hasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations
instHasStrongEpiMonoFactorisations 📖mathematicalCategoryTheory.Limits.HasStrongEpiMonoFactorisations
SimplexCategory
smallCategory
CategoryTheory.Functor.hasStrongEpiMonoFactorisations_imp_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
NonemptyFinLinOrd.instHasStrongEpiMonoFactorisations
instHasTerminal 📖mathematicalCategoryTheory.Limits.HasTerminal
SimplexCategory
smallCategory
CategoryTheory.Limits.IsTerminal.hasTerminal
instMonoδ 📖mathematicalCategoryTheory.Mono
SimplexCategory
smallCategory
δ
mono_iff_injective
Fin.succAbove_right_injective
instReflectsIsomorphismsForgetOrderHomFinHAddNatLenOfNat 📖mathematicalCategoryTheory.Functor.ReflectsIsomorphisms
SimplexCategory
smallCategory
CategoryTheory.types
CategoryTheory.forget
OrderHom
len
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
instConcreteCategoryOrderHomFinHAddNatLenOfNat
CategoryTheory.Iso.isIso_hom
not_le
CategoryTheory.ConcreteCategory.congr_hom
CategoryTheory.Iso.inv_hom_id
OrderHom.monotone
le_of_not_ge
eq_of_le_of_not_lt
le_refl
Hom.ext
OrderHom.ext
CategoryTheory.Iso.hom_inv_id
instSplitEpiCategory 📖mathematicalCategoryTheory.SplitEpiCategory
SimplexCategory
smallCategory
CategoryTheory.Functor.splitEpiCategoryImpOfIsEquivalence
CategoryTheory.Equivalence.isEquivalence_inverse
NonemptyFinLinOrd.instSplitEpiCategory
instSubsingletonHomMkOfNatNat 📖mathematicalQuiver.Hom
SimplexCategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
smallCategory
Hom.ext
OrderHom.ext
isIso_iff_of_epi 📖mathematicalCategoryTheory.IsIso
SimplexCategory
smallCategory
len
len_eq_of_isIso
isIso_of_bijective
Finite.injective_iff_surjective
Finite.of_fintype
epi_iff_surjective
isIso_iff_of_mono 📖mathematicalCategoryTheory.IsIso
SimplexCategory
smallCategory
len
len_eq_of_isIso
isIso_of_bijective
mono_iff_injective
Finite.injective_iff_surjective
Finite.of_fintype
isIso_of_bijective 📖mathematicalFunction.Bijective
len
OrderHom.toFun
PartialOrder.toPreorder
Fin.instPartialOrder
Hom.toOrderHom
CategoryTheory.IsIso
SimplexCategory
smallCategory
CategoryTheory.isIso_of_reflects_iso
CategoryTheory.isIso_iff_bijective
instReflectsIsomorphismsForgetOrderHomFinHAddNatLenOfNat
isSkeletonOf 📖mathematicalCategoryTheory.IsSkeletonOf
NonemptyFinLinOrd
NonemptyFinLinOrd.instLargeCategory
SimplexCategory
smallCategory
skeletalFunctor
skeletal
SkeletalFunctor.isEquivalence
iso_eq_iso_refl 📖mathematicalCategoryTheory.Iso.refl
SimplexCategory
smallCategory
Finset.card_fin
Finset.orderEmbOfFin_unique'
Finset.mem_univ
CategoryTheory.Iso.ext
Hom.ext
OrderHom.ext
le_of_epi 📖len_le_of_epi
le_of_mono 📖len_le_of_mono
len_eq_of_isIso 📖mathematicallenle_antisymm
len_le_of_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
len_le_of_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
len_le_of_epi 📖mathematicallenFintype.card_fin
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Fintype.card_le_of_surjective
epi_iff_surjective
len_le_of_mono 📖mathematicallenFintype.card_fin
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Fintype.card_le_of_injective
mono_iff_injective
len_lt_of_mono 📖mathematicallen
mkOfLe_refl 📖mathematicalmkOfLe
const
Hom.ext_one_left
mkOfSucc_eq_id 📖mathematicalmkOfSucc
CategoryTheory.CategoryStruct.id
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
mkOfSucc_homToOrderHom_one 📖mathematicalDFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
Hom.toOrderHom
mkOfSucc
mkOfSucc_homToOrderHom_zero 📖mathematicalDFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
Hom.toOrderHom
mkOfSucc
mkOfSucc_one_eq_δ 📖mathematicalmkOfSucc
δ
mkOfSucc_subinterval_eq 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
mkOfSucc
subinterval
Hom.ext
OrderHom.ext
mkOfSucc_zero_eq_δ 📖mathematicalmkOfSucc
δ
mkOfSucc_δ_eq 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
mkOfSucc
δ
intervalEdge
Hom.ext
OrderHom.ext
Fintype.complete
Fin.castSucc_succAbove_castSucc
Fin.succAbove_succ_self
Fin.succAbove_castSucc_self
mkOfSucc_δ_gt 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
mkOfSucc
δ
Hom.ext
OrderHom.ext
Fintype.complete
Fin.succAbove_of_le_castSucc
mkOfSucc_δ_lt 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
mkOfSucc
δ
Hom.ext
OrderHom.ext
Fintype.complete
Fin.succAbove_of_castSucc_lt
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass
mono_iff_injective 📖mathematicalCategoryTheory.Mono
SimplexCategory
smallCategory
len
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
Hom.toOrderHom
CategoryTheory.Functor.mono_map_iff_mono
CategoryTheory.Functor.preservesMonomorphisms_of_isRightAdjoint
CategoryTheory.Functor.isRightAdjoint_of_isEquivalence
CategoryTheory.Equivalence.isEquivalence_functor
CategoryTheory.reflectsMonomorphisms_of_reflectsLimitsOfShape
CategoryTheory.Limits.reflectsLimitsOfShape_of_reflectsLimits
CategoryTheory.Limits.fullyFaithful_reflectsLimits
CategoryTheory.Equivalence.full_functor
CategoryTheory.Equivalence.faithful_functor
CategoryTheory.ConcreteCategory.hom_ofHom
skeletal 📖mathematicalCategoryTheory.Skeletal
SimplexCategory
smallCategory
Fintype.card_congr
ext
Fintype.card_fin
skeletalFunctor_map 📖mathematicalCategoryTheory.Functor.map
SimplexCategory
smallCategory
NonemptyFinLinOrd
NonemptyFinLinOrd.instLargeCategory
skeletalFunctor
NonemptyFinLinOrd.ofHom
len
Fin.instLinearOrder
Fin.fintype
Hom.toOrderHom
skeletalFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
SimplexCategory
smallCategory
NonemptyFinLinOrd
NonemptyFinLinOrd.instLargeCategory
skeletalFunctor
NonemptyFinLinOrd.of
len
Fin.fintype
Fin.instLinearOrder
toCat_map 📖mathematicalCategoryTheory.Functor.map
SimplexCategory
smallCategory
CategoryTheory.Cat
CategoryTheory.Cat.category
toCat
CategoryTheory.Functor.toCatHom
Preord.carrier
CategoryTheory.Functor.obj
PartOrd
PartOrd.instCategory
Preord
Preord.instCategory
CategoryTheory.forget₂
OrderHom
PartOrd.carrier
PartialOrder.toPreorder
PartOrd.str
OrderHom.instFunLike
PartOrd.instConcreteCategoryOrderHomCarrier
Preord.str
Preord.instConcreteCategoryOrderHomCarrier
PartOrd.hasForgetToPreord
Lat
Lat.instCategory
LatticeHom
Lat.carrier
Lat.str
LatticeHom.instFunLike
Lat.instConcreteCategoryLatticeHomCarrier
Lat.hasForgetToPartOrd
LinOrd
LinOrd.instCategory
LinOrd.carrier
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinOrd.str
LinOrd.instConcreteCategoryOrderHomCarrier
LinOrd.hasForgetToLat
NonemptyFinLinOrd
NonemptyFinLinOrd.instLargeCategory
NonemptyFinLinOrd.toLinOrd
NonemptyFinLinOrd.instConcreteCategoryOrderHomCarrier
NonemptyFinLinOrd.hasForgetToLinOrd
NonemptyFinLinOrd.of
len
Fin.fintype
Fin.instLinearOrder
Preorder.smallCategory
Monotone.functor
DFunLike.coe
Preord.Hom.hom
NonemptyFinLinOrd.ofHom
Hom.toOrderHom
toCat_obj 📖mathematicalCategoryTheory.Functor.obj
SimplexCategory
smallCategory
CategoryTheory.Cat
CategoryTheory.Cat.category
toCat
CategoryTheory.Cat.of
Preord.carrier
PartOrd
PartOrd.instCategory
Preord
Preord.instCategory
CategoryTheory.forget₂
OrderHom
PartOrd.carrier
PartialOrder.toPreorder
PartOrd.str
OrderHom.instFunLike
PartOrd.instConcreteCategoryOrderHomCarrier
Preord.str
Preord.instConcreteCategoryOrderHomCarrier
PartOrd.hasForgetToPreord
Lat
Lat.instCategory
LatticeHom
Lat.carrier
Lat.str
LatticeHom.instFunLike
Lat.instConcreteCategoryLatticeHomCarrier
Lat.hasForgetToPartOrd
LinOrd
LinOrd.instCategory
LinOrd.carrier
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinOrd.str
LinOrd.instConcreteCategoryOrderHomCarrier
LinOrd.hasForgetToLat
NonemptyFinLinOrd
NonemptyFinLinOrd.instLargeCategory
NonemptyFinLinOrd.toLinOrd
NonemptyFinLinOrd.instConcreteCategoryOrderHomCarrier
NonemptyFinLinOrd.hasForgetToLinOrd
NonemptyFinLinOrd.of
len
Fin.fintype
Fin.instLinearOrder
Preorder.smallCategory
toType_apply 📖mathematicalCategoryTheory.ToType
SimplexCategory
smallCategory
OrderHom
len
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
instConcreteCategoryOrderHomFinHAddNatLenOfNat
δ_comp_δ 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
Hom.ext
OrderHom.ext
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
δ_comp_δ' 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
δ_comp_δ
δ_comp_δ'' 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
Fin.le_iff_val_le_val
Fin.le_iff_val_le_val
δ_comp_δ
δ_comp_δ_self 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
δ_comp_δ
le_refl
δ_comp_δ_self' 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
δ_comp_δ_self
δ_comp_δ_self'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_δ_self'
δ_comp_δ_self_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_δ_self
δ_comp_σ_of_gt 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
σ
Hom.ext
OrderHom.ext
le_or_gt
Fin.succAbove_of_castSucc_lt
Fin.castSucc_lt_succ_iff
Fin.castSucc_le_castSucc_iff
Fin.predAbove_of_le_castSucc
Iff.not
LT.lt.ne
Fin.castPred_castSucc
Fin.castSucc_castPred
LE.le.trans_lt
Fin.ne_zero_of_lt
Fin.predAbove_of_castSucc_lt
Fin.castSucc_pred_eq_pred_castSucc
Fin.succAbove_of_le_castSucc
Fin.succ_le_castSucc_iff
LT.lt.trans
LT.lt.le
Fin.le_castSucc_pred_iff
δ_comp_σ_of_gt' 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
σ
add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instPartialOrder
covariant_swap_add_of_covariant_add
Preorder.toLE
PartialOrder.toPreorder
Nat.instAddCommSemigroup
IsOrderedAddMonoid.toAddLeftMono
Nat.instAddCommMonoid
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
Nat.instLinearOrder
lt_of_lt_of_le
Nat.instPreorder
add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
lt_of_lt_of_le
δ_comp_σ_of_gt
δ_comp_σ_of_gt'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
σ
add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instPartialOrder
covariant_swap_add_of_covariant_add
Preorder.toLE
PartialOrder.toPreorder
Nat.instAddCommSemigroup
IsOrderedAddMonoid.toAddLeftMono
Nat.instAddCommMonoid
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
Nat.instLinearOrder
lt_of_lt_of_le
Nat.instPreorder
add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
lt_of_lt_of_le
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_of_gt'
δ_comp_σ_of_gt_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
σ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_of_gt
δ_comp_σ_of_le 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
σ
Hom.ext
OrderHom.ext
le_or_gt
Fin.succAbove_of_le_castSucc
Fin.castSucc_le_castSucc_iff
Fin.succ_predAbove_succ
Fin.predAbove_of_le_castSucc
Fin.castSucc_castPred
Fin.ne_zero_of_lt
Fin.predAbove_of_castSucc_lt
LE.le.trans_lt
Fin.succAbove_of_castSucc_lt
LE.le.trans_lt'
LT.lt.le
LT.lt.trans
Iff.not
LT.lt.ne
Fin.castPred_castSucc
δ_comp_σ_of_le_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
σ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_of_le
δ_comp_σ_self 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
σ
CategoryTheory.CategoryStruct.id
Hom.ext
OrderHom.ext
Fin.castPred.congr_simp
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
δ_comp_σ_self' 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
σ
CategoryTheory.CategoryStruct.id
δ_comp_σ_self
δ_comp_σ_self'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
σ
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_self'
δ_comp_σ_self_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
σ
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_self
δ_comp_σ_succ 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
σ
CategoryTheory.CategoryStruct.id
Hom.ext
OrderHom.ext
Fin.castPred.congr_simp
δ_comp_σ_succ' 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
σ
CategoryTheory.CategoryStruct.id
δ_comp_σ_succ
δ_comp_σ_succ'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
σ
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_succ'
δ_comp_σ_succ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
σ
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_succ
δ_injective 📖mathematicalQuiver.Hom
SimplexCategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
δ_one_eq_const 📖mathematicalδ
const
len
δ_one_mkOfSucc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
mkOfSucc
const
Hom.ext
OrderHom.ext
Fintype.complete
δ_zero_eq_const 📖mathematicalδ
const
len
δ_zero_mkOfSucc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
δ
mkOfSucc
const
Hom.ext
OrderHom.ext
Fintype.complete
σ_comp_σ 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
σ
Hom.ext
OrderHom.ext
Fin.predAbove_right_last
Fin.predAbove_right_zero
le_or_gt
Fin.ne_zero_of_lt
Fin.castSucc_lt_succ_iff
Fin.predAbove_of_castSucc_lt
Fin.succ_predAbove_succ
Fin.castSucc_le_castSucc_iff
Fin.predAbove_of_le_castSucc
Iff.not
LT.lt.ne
Fin.castPred_castSucc
Fin.le_pred_iff
Fin.succ_le_castSucc_iff
LE.le.trans_lt
LE.le.trans
LT.lt.le
LE.le.trans_lt'
σ_comp_σ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
smallCategory
σ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
σ_comp_σ
σ_injective 📖mathematicalQuiver.Hom
SimplexCategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
smallCategory
σ

SimplexCategory.Hom

Theorems

NameKindAssumesProvesValidatesDepends On
ext_one_left 📖SimplexCategory.len
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
toOrderHom
ext
OrderHom.ext
ext_zero_left 📖SimplexCategory.len
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
toOrderHom
ext
OrderHom.ext

SimplexCategory.SkeletalFunctor

Theorems

NameKindAssumesProvesValidatesDepends On
instEssSurjNonemptyFinLinOrdSkeletalFunctor 📖mathematicalCategoryTheory.Functor.EssSurj
SimplexCategory
NonemptyFinLinOrd
SimplexCategory.smallCategory
NonemptyFinLinOrd.instLargeCategory
SimplexCategory.skeletalFunctor
Fintype.card_pos_iff
OrderEmbedding.strictMono
StrictMono.monotone
StrictMono.le_iff_le
OrderIso.apply_symm_apply
NonemptyFinLinOrd.hom_ext
OrderHom.ext
OrderIso.symm_apply_apply
instFaithfulNonemptyFinLinOrdSkeletalFunctor 📖mathematicalCategoryTheory.Functor.Faithful
SimplexCategory
SimplexCategory.smallCategory
NonemptyFinLinOrd
NonemptyFinLinOrd.instLargeCategory
SimplexCategory.skeletalFunctor
SimplexCategory.Hom.ext
OrderHom.ext
CategoryTheory.congr_fun
instFullNonemptyFinLinOrdSkeletalFunctor 📖mathematicalCategoryTheory.Functor.Full
SimplexCategory
SimplexCategory.smallCategory
NonemptyFinLinOrd
NonemptyFinLinOrd.instLargeCategory
SimplexCategory.skeletalFunctor
isEquivalence 📖mathematicalCategoryTheory.Functor.IsEquivalence
SimplexCategory
SimplexCategory.smallCategory
NonemptyFinLinOrd
NonemptyFinLinOrd.instLargeCategory
SimplexCategory.skeletalFunctor
instFaithfulNonemptyFinLinOrdSkeletalFunctor
instFullNonemptyFinLinOrdSkeletalFunctor
instEssSurjNonemptyFinLinOrdSkeletalFunctor

SimplexCategory.skeletalFunctor

Theorems

NameKindAssumesProvesValidatesDepends On
coe_map 📖mathematicalLinOrd.Hom.hom
NonemptyFinLinOrd.toLinOrd
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
NonemptyFinLinOrd
NonemptyFinLinOrd.instLargeCategory
SimplexCategory.skeletalFunctor
CategoryTheory.InducedCategory.Hom.hom
LinOrd
LinOrd.instCategory
CategoryTheory.Functor.map
SimplexCategory.Hom.toOrderHom

SimplexCategory.toCat

Theorems

NameKindAssumesProvesValidatesDepends On
obj_eq_Fin 📖mathematicalCategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Cat
CategoryTheory.Cat.category
SimplexCategory.toCat

---

← Back to Index