| Name | Category | Theorems |
degeneracies 📖 | CompData | — |
faces 📖 | CompData | — |
generators 📖 | CompOp | 3 mathmath: multiplicativeClosure_isGenerator_eq_top, generators.σ, generators.δ
|
len 📖 | CompOp | 4 mathmath: toSimplexCategory_len, mk_len, eq_or_len_le_of_P_δ, ext_iff
|
mk 📖 | CompOp | — |
rec 📖 | CompOp | — |
toSimplexCategory 📖 | CompOp | 7 mathmath: toSimplexCategory_len, isSplitEpi_toSimplexCategory_map_of_P_σ, toSimplexCategory_map_σ, toSimplexCategory_obj_mk, simplicialEvalσ_of_isAdmissible, toSimplexCategory_map_δ, isSplitMono_toSimplexCategory_map_of_P_δ
|
δ 📖 | CompOp | 15 mathmath: δ_comp_δ_nat, δ_comp_σ_of_gt_assoc, δ_comp_σ_self, δ_comp_σ_of_gt, instIsSplitMonoδ, δ_comp_σ_succ, δ_comp_σ_of_le_assoc, P_δ.δ, δ_comp_σ_of_le, generators.δ, toSimplexCategory_map_δ, δ_comp_δ_assoc, δ_comp_σ_self_assoc, δ_comp_δ, δ_comp_σ_succ_assoc
|
σ 📖 | CompOp | 18 mathmath: σ_comp_σ, δ_comp_σ_of_gt_assoc, standardσ_simplicialInsert, σ_comp_σ_nat, δ_comp_σ_self, δ_comp_σ_of_gt, toSimplexCategory_map_σ, δ_comp_σ_succ, δ_comp_σ_of_le_assoc, P_σ.σ, instIsSplitEpiσ, standardσ_cons, σ_comp_σ_assoc, generators.σ, δ_comp_σ_of_le, δ_comp_σ_self_assoc, standardσ_cons_assoc, δ_comp_σ_succ_assoc
|