Documentation Verification Report

Basic

📁 Source: Mathlib/AlgebraicTopology/SimplexCategory/GeneratorsRelations/Basic.lean

Statistics

MetricCount
DefinitionsFreeSimplexQuiver, homRel, len, mk, quiv, δ, σ, SimplexCategoryGenRel, degeneracies, faces, generators, len, mk, rec, toSimplexCategory, δ, σ, instCategorySimplexCategoryGenRel
18
Theoremsext, ext_iff, δ, σ, hom_induction, hom_induction', mk_len, multiplicativeClosure_isGenerator_eq_top, toSimplexCategory_len, toSimplexCategory_map_δ, toSimplexCategory_map_σ, toSimplexCategory_obj_mk, δ_comp_δ, δ_comp_δ_assoc, δ_comp_δ_nat, δ_comp_σ_of_gt, δ_comp_σ_of_gt_assoc, δ_comp_σ_of_le, δ_comp_σ_of_le_assoc, δ_comp_σ_self, δ_comp_σ_self_assoc, δ_comp_σ_succ, δ_comp_σ_succ_assoc, σ_comp_σ, σ_comp_σ_assoc, σ_comp_σ_nat
26
Total44

FreeSimplexQuiver

Definitions

NameCategoryTheorems
homRel 📖CompData
len 📖CompOp
mk 📖CompOp
quiv 📖CompOp
δ 📖CompOp
σ 📖CompOp

SimplexCategoryGenRel

Definitions

NameCategoryTheorems
degeneracies 📖CompData
faces 📖CompData
generators 📖CompOp
3 mathmath: multiplicativeClosure_isGenerator_eq_top, generators.σ, generators.δ
len 📖CompOp
4 mathmath: toSimplexCategory_len, mk_len, eq_or_len_le_of_P_δ, ext_iff
mk 📖CompOp
rec 📖CompOp
toSimplexCategory 📖CompOp
7 mathmath: toSimplexCategory_len, isSplitEpi_toSimplexCategory_map_of_P_σ, toSimplexCategory_map_σ, toSimplexCategory_obj_mk, simplicialEvalσ_of_isAdmissible, toSimplexCategory_map_δ, isSplitMono_toSimplexCategory_map_of_P_δ
δ 📖CompOp
15 mathmath: δ_comp_δ_nat, δ_comp_σ_of_gt_assoc, δ_comp_σ_self, δ_comp_σ_of_gt, instIsSplitMonoδ, δ_comp_σ_succ, δ_comp_σ_of_le_assoc, P_δ.δ, δ_comp_σ_of_le, generators.δ, toSimplexCategory_map_δ, δ_comp_δ_assoc, δ_comp_σ_self_assoc, δ_comp_δ, δ_comp_σ_succ_assoc
σ 📖CompOp
18 mathmath: σ_comp_σ, δ_comp_σ_of_gt_assoc, standardσ_simplicialInsert, σ_comp_σ_nat, δ_comp_σ_self, δ_comp_σ_of_gt, toSimplexCategory_map_σ, δ_comp_σ_succ, δ_comp_σ_of_le_assoc, P_σ.σ, instIsSplitEpiσ, standardσ_cons, σ_comp_σ_assoc, generators.σ, δ_comp_σ_of_le, δ_comp_σ_self_assoc, standardσ_cons_assoc, δ_comp_σ_succ_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖len
ext_iff 📖mathematicallenext
hom_induction 📖CategoryTheory.CategoryStruct.id
SimplexCategoryGenRel
CategoryTheory.Category.toCategoryStruct
instCategorySimplexCategoryGenRel
CategoryTheory.CategoryStruct.comp
δ
σ
CategoryTheory.Category.id_comp
top_le_iff
multiplicativeClosure_isGenerator_eq_top
CategoryTheory.MorphismProperty.top_apply
hom_induction' 📖CategoryTheory.CategoryStruct.id
SimplexCategoryGenRel
CategoryTheory.Category.toCategoryStruct
instCategorySimplexCategoryGenRel
CategoryTheory.CategoryStruct.comp
δ
σ
CategoryTheory.Category.comp_id
top_le_iff
multiplicativeClosure_isGenerator_eq_top
CategoryTheory.MorphismProperty.multiplicativeClosure_eq_multiplicativeClosure'
CategoryTheory.MorphismProperty.top_apply
mk_len 📖mathematicallen
multiplicativeClosure_isGenerator_eq_top 📖mathematicalCategoryTheory.MorphismProperty.multiplicativeClosure
SimplexCategoryGenRel
instCategorySimplexCategoryGenRel
generators
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
le_antisymm
CategoryTheory.Quotient.induction
CategoryTheory.Paths.induction
CategoryTheory.MorphismProperty.id_mem
CategoryTheory.MorphismProperty.IsMultiplicative.toContainsIdentities
CategoryTheory.MorphismProperty.instIsMultiplicativeMultiplicativeClosure
CategoryTheory.MorphismProperty.comp_mem
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
generators.δ
generators.σ
toSimplexCategory_len 📖mathematicalSimplexCategory.len
CategoryTheory.Functor.obj
SimplexCategoryGenRel
instCategorySimplexCategoryGenRel
SimplexCategory
SimplexCategory.smallCategory
toSimplexCategory
len
toSimplexCategory_map_δ 📖mathematicalCategoryTheory.Functor.map
SimplexCategoryGenRel
instCategorySimplexCategoryGenRel
SimplexCategory
SimplexCategory.smallCategory
toSimplexCategory
δ
SimplexCategory.δ
toSimplexCategory_map_σ 📖mathematicalCategoryTheory.Functor.map
SimplexCategoryGenRel
instCategorySimplexCategoryGenRel
SimplexCategory
SimplexCategory.smallCategory
toSimplexCategory
σ
SimplexCategory.σ
toSimplexCategory_obj_mk 📖mathematicalCategoryTheory.Functor.obj
SimplexCategoryGenRel
instCategorySimplexCategoryGenRel
SimplexCategory
SimplexCategory.smallCategory
toSimplexCategory
δ_comp_δ 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategoryGenRel
CategoryTheory.Category.toCategoryStruct
instCategorySimplexCategoryGenRel
δ
CategoryTheory.Quotient.sound
δ_comp_δ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategoryGenRel
CategoryTheory.Category.toCategoryStruct
instCategorySimplexCategoryGenRel
δ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_δ
δ_comp_δ_nat 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategoryGenRel
CategoryTheory.Category.toCategoryStruct
instCategorySimplexCategoryGenRel
δ
δ_comp_δ
δ_comp_σ_of_gt 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategoryGenRel
CategoryTheory.Category.toCategoryStruct
instCategorySimplexCategoryGenRel
δ
σ
CategoryTheory.Quotient.sound
δ_comp_σ_of_gt_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategoryGenRel
CategoryTheory.Category.toCategoryStruct
instCategorySimplexCategoryGenRel
δ
σ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_of_gt
δ_comp_σ_of_le 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategoryGenRel
CategoryTheory.Category.toCategoryStruct
instCategorySimplexCategoryGenRel
δ
σ
CategoryTheory.Quotient.sound
δ_comp_σ_of_le_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategoryGenRel
CategoryTheory.Category.toCategoryStruct
instCategorySimplexCategoryGenRel
δ
σ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_of_le
δ_comp_σ_self 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategoryGenRel
CategoryTheory.Category.toCategoryStruct
instCategorySimplexCategoryGenRel
δ
σ
CategoryTheory.CategoryStruct.id
CategoryTheory.Quotient.sound
δ_comp_σ_self_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategoryGenRel
CategoryTheory.Category.toCategoryStruct
instCategorySimplexCategoryGenRel
δ
σ
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_self
δ_comp_σ_succ 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategoryGenRel
CategoryTheory.Category.toCategoryStruct
instCategorySimplexCategoryGenRel
δ
σ
CategoryTheory.CategoryStruct.id
CategoryTheory.Quotient.sound
δ_comp_σ_succ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategoryGenRel
CategoryTheory.Category.toCategoryStruct
instCategorySimplexCategoryGenRel
δ
σ
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_succ
σ_comp_σ 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategoryGenRel
CategoryTheory.Category.toCategoryStruct
instCategorySimplexCategoryGenRel
σ
CategoryTheory.Quotient.sound
σ_comp_σ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategoryGenRel
CategoryTheory.Category.toCategoryStruct
instCategorySimplexCategoryGenRel
σ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
σ_comp_σ
σ_comp_σ_nat 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategoryGenRel
CategoryTheory.Category.toCategoryStruct
instCategorySimplexCategoryGenRel
σ
σ_comp_σ

SimplexCategoryGenRel.generators

Theorems

NameKindAssumesProvesValidatesDepends On
δ 📖mathematicalSimplexCategoryGenRel.generators
SimplexCategoryGenRel.δ
le_sup_left
σ 📖mathematicalSimplexCategoryGenRel.generators
SimplexCategoryGenRel.σ
le_sup_right

(root)

Definitions

NameCategoryTheorems
FreeSimplexQuiver 📖CompOp
SimplexCategoryGenRel 📖CompOp
35 mathmath: SimplexCategoryGenRel.σ_comp_σ, SimplexCategoryGenRel.standardσ_nil, SimplexCategoryGenRel.multiplicativeClosure_isGenerator_eq_top, SimplexCategoryGenRel.toSimplexCategory_len, SimplexCategoryGenRel.δ_comp_δ_nat, SimplexCategoryGenRel.δ_comp_σ_of_gt_assoc, SimplexCategoryGenRel.isSplitEpi_toSimplexCategory_map_of_P_σ, SimplexCategoryGenRel.standardσ_simplicialInsert, SimplexCategoryGenRel.σ_comp_σ_nat, SimplexCategoryGenRel.δ_comp_σ_self, SimplexCategoryGenRel.δ_comp_σ_of_gt, SimplexCategoryGenRel.instIsSplitMonoδ, SimplexCategoryGenRel.standardσ_comp_standardσ_assoc, SimplexCategoryGenRel.toSimplexCategory_map_σ, SimplexCategoryGenRel.δ_comp_σ_succ, SimplexCategoryGenRel.δ_comp_σ_of_le_assoc, SimplexCategoryGenRel.exists_P_σ_P_δ_factorization, SimplexCategoryGenRel.toSimplexCategory_obj_mk, SimplexCategoryGenRel.instIsSplitEpiσ, SimplexCategoryGenRel.standardσ_cons, SimplexCategoryGenRel.σ_comp_σ_assoc, SimplexCategoryGenRel.δ_comp_σ_of_le, SimplexCategoryGenRel.simplicialEvalσ_of_isAdmissible, SimplexCategoryGenRel.eq_or_len_le_of_P_δ, SimplexCategoryGenRel.toSimplexCategory_map_δ, SimplexCategoryGenRel.δ_comp_δ_assoc, SimplexCategoryGenRel.isSplitMono_P_δ, SimplexCategoryGenRel.isSplitEpi_P_σ, SimplexCategoryGenRel.δ_comp_σ_self_assoc, SimplexCategoryGenRel.standardσ_comp_standardσ, SimplexCategoryGenRel.δ_comp_δ, SimplexCategoryGenRel.standardσ_cons_assoc, SimplexCategoryGenRel.instHasFactorizationP_σP_δ, SimplexCategoryGenRel.δ_comp_σ_succ_assoc, SimplexCategoryGenRel.isSplitMono_toSimplexCategory_map_of_P_δ
instCategorySimplexCategoryGenRel 📖CompOp
35 mathmath: SimplexCategoryGenRel.σ_comp_σ, SimplexCategoryGenRel.standardσ_nil, SimplexCategoryGenRel.multiplicativeClosure_isGenerator_eq_top, SimplexCategoryGenRel.toSimplexCategory_len, SimplexCategoryGenRel.δ_comp_δ_nat, SimplexCategoryGenRel.δ_comp_σ_of_gt_assoc, SimplexCategoryGenRel.isSplitEpi_toSimplexCategory_map_of_P_σ, SimplexCategoryGenRel.standardσ_simplicialInsert, SimplexCategoryGenRel.σ_comp_σ_nat, SimplexCategoryGenRel.δ_comp_σ_self, SimplexCategoryGenRel.δ_comp_σ_of_gt, SimplexCategoryGenRel.instIsSplitMonoδ, SimplexCategoryGenRel.standardσ_comp_standardσ_assoc, SimplexCategoryGenRel.toSimplexCategory_map_σ, SimplexCategoryGenRel.δ_comp_σ_succ, SimplexCategoryGenRel.δ_comp_σ_of_le_assoc, SimplexCategoryGenRel.exists_P_σ_P_δ_factorization, SimplexCategoryGenRel.toSimplexCategory_obj_mk, SimplexCategoryGenRel.instIsSplitEpiσ, SimplexCategoryGenRel.standardσ_cons, SimplexCategoryGenRel.σ_comp_σ_assoc, SimplexCategoryGenRel.δ_comp_σ_of_le, SimplexCategoryGenRel.simplicialEvalσ_of_isAdmissible, SimplexCategoryGenRel.eq_or_len_le_of_P_δ, SimplexCategoryGenRel.toSimplexCategory_map_δ, SimplexCategoryGenRel.δ_comp_δ_assoc, SimplexCategoryGenRel.isSplitMono_P_δ, SimplexCategoryGenRel.isSplitEpi_P_σ, SimplexCategoryGenRel.δ_comp_σ_self_assoc, SimplexCategoryGenRel.standardσ_comp_standardσ, SimplexCategoryGenRel.δ_comp_δ, SimplexCategoryGenRel.standardσ_cons_assoc, SimplexCategoryGenRel.instHasFactorizationP_σP_δ, SimplexCategoryGenRel.δ_comp_σ_succ_assoc, SimplexCategoryGenRel.isSplitMono_toSimplexCategory_map_of_P_δ

---

← Back to Index