Documentation Verification Report

EpiMono

📁 Source: Mathlib/AlgebraicTopology/SimplexCategory/GeneratorsRelations/EpiMono.lean

Statistics

MetricCount
DefinitionsP_δ, P_σ, splitEpiσ, splitMonoδ
4
Theoremsδ, σ, eq_or_len_le_of_P_δ, exists_P_σ_P_δ_factorization, instHasFactorizationP_σP_δ, instIsSplitEpiσ, instIsSplitMonoδ, isSplitEpi_P_σ, isSplitEpi_toSimplexCategory_map_of_P_σ, isSplitMono_P_δ, isSplitMono_toSimplexCategory_map_of_P_δ
11
Total15

SimplexCategoryGenRel

Definitions

NameCategoryTheorems
P_δ 📖CompOp
2 mathmath: P_δ.δ, instHasFactorizationP_σP_δ
P_σ 📖CompOp
2 mathmath: P_σ.σ, instHasFactorizationP_σP_δ
splitEpiσ 📖CompOp
splitMonoδ 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
eq_or_len_le_of_P_δ 📖mathematicalP_δCategoryTheory.eqToHom
SimplexCategoryGenRel
CategoryTheory.Category.toCategoryStruct
instCategorySimplexCategoryGenRel
len
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass
exists_P_σ_P_δ_factorization 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategoryGenRel
CategoryTheory.Category.toCategoryStruct
instCategorySimplexCategoryGenRel
hom_induction
CategoryTheory.MorphismProperty.id_mem
CategoryTheory.MorphismProperty.IsMultiplicative.toContainsIdentities
CategoryTheory.MorphismProperty.instIsMultiplicativeMultiplicativeClosure
CategoryTheory.Category.comp_id
CategoryTheory.MorphismProperty.comp_mem
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
P_δ.δ
CategoryTheory.Category.assoc
P_σ.σ
Mathlib.Tactic.Reassoc.eq_whisker'
instHasFactorizationP_σP_δ 📖mathematicalCategoryTheory.MorphismProperty.HasFactorization
SimplexCategoryGenRel
instCategorySimplexCategoryGenRel
P_σ
P_δ
exists_P_σ_P_δ_factorization
instIsSplitEpiσ 📖mathematicalCategoryTheory.IsSplitEpi
SimplexCategoryGenRel
instCategorySimplexCategoryGenRel
σ
CategoryTheory.IsSplitEpi.mk'
instIsSplitMonoδ 📖mathematicalCategoryTheory.IsSplitMono
SimplexCategoryGenRel
instCategorySimplexCategoryGenRel
δ
CategoryTheory.IsSplitMono.mk'
isSplitEpi_P_σ 📖mathematicalP_σCategoryTheory.IsSplitEpi
SimplexCategoryGenRel
instCategorySimplexCategoryGenRel
instIsSplitEpiσ
CategoryTheory.IsSplitEpi.of_iso
CategoryTheory.IsIso.id
CategoryTheory.instIsSplitEpiComp
isSplitEpi_toSimplexCategory_map_of_P_σ 📖mathematicalP_σCategoryTheory.IsSplitEpi
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
SimplexCategoryGenRel
instCategorySimplexCategoryGenRel
toSimplexCategory
CategoryTheory.Functor.map
CategoryTheory.IsSplitEpi.exists_splitEpi
isSplitEpi_P_σ
isSplitMono_P_δ 📖mathematicalP_δCategoryTheory.IsSplitMono
SimplexCategoryGenRel
instCategorySimplexCategoryGenRel
instIsSplitMonoδ
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.IsIso.id
CategoryTheory.instIsSplitMonoComp
isSplitMono_toSimplexCategory_map_of_P_δ 📖mathematicalP_δCategoryTheory.IsSplitMono
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
SimplexCategoryGenRel
instCategorySimplexCategoryGenRel
toSimplexCategory
CategoryTheory.Functor.map
CategoryTheory.IsSplitMono.exists_splitMono
isSplitMono_P_δ

SimplexCategoryGenRel.P_δ

Theorems

NameKindAssumesProvesValidatesDepends On
δ 📖mathematicalSimplexCategoryGenRel.P_δ
SimplexCategoryGenRel.δ

SimplexCategoryGenRel.P_σ

Theorems

NameKindAssumesProvesValidatesDepends On
σ 📖mathematicalSimplexCategoryGenRel.P_σ
SimplexCategoryGenRel.σ

---

← Back to Index