Documentation Verification Report

Truncated

📁 Source: Mathlib/AlgebraicTopology/SimplexCategory/Truncated.lean

Statistics

MetricCount
DefinitionsTruncated, instDecidableEqHom, δ, δ₂, σ, σ₂
6
Theoremsinitial_incl, initial_inclusion, δ₂_one_comp_σ₂_one, δ₂_one_comp_σ₂_one_assoc, δ₂_one_comp_σ₂_zero, δ₂_one_comp_σ₂_zero_assoc, δ₂_one_eq_const, δ₂_two_comp_σ₂_one, δ₂_two_comp_σ₂_one_assoc, δ₂_two_comp_σ₂_zero, δ₂_two_comp_σ₂_zero_assoc, δ₂_zero_comp_δ₂_two, δ₂_zero_comp_δ₂_two_assoc, δ₂_zero_comp_σ₂_one, δ₂_zero_comp_σ₂_one_assoc, δ₂_zero_comp_σ₂_zero, δ₂_zero_comp_σ₂_zero_assoc, δ₂_zero_eq_const
18
Total24

SimplexCategory

Definitions

NameCategoryTheorems
Truncated 📖CompOp
110 mathmath: SSet.Truncated.tensor_map_apply_snd, SSet.Truncated.mapHomotopyCategory_homMk, SSet.Truncated.Path.mk₂_arrow, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_id_homMk, CategoryTheory.nerve.functorOfNerveMap_map, SSet.Truncated.StrictSegal.spine_spineToSimplex, CategoryTheory.SimplicialObject.Truncated.whiskering_obj_obj_obj, SSet.Truncated.Edge.map_fst, CategoryTheory.SimplicialObject.Truncated.whiskering_map_app_app, SSet.Truncated.HomotopyCategory.BinaryProduct.functorCompInverseIso_inv_app, SSet.Truncated.Edge.CompStruct.d₂, SSet.Truncated.HomotopyCategory.BinaryProduct.functorCompInverseIso_hom_app, SSet.Truncated.Path.map_arrow, SSet.Truncated.StrictSegal.spineToSimplex_spine, SSet.OneTruncation₂.ofNerve₂.natIso_inv_app_obj_obj, SSet.Truncated.HomotopyCategory₂.mk_surjective, CategoryTheory.SimplicialObject.Truncated.trunc_obj_obj, CategoryTheory.CosimplicialObject.Truncated.whiskering_obj_obj_obj, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_hom_app, SSet.Truncated.Edge.CompStruct.tensor_simplex_snd, SSet.Truncated.Edge.id_tensor_id, SSet.Truncated.spine_map_subinterval, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_left, CategoryTheory.CosimplicialObject.Truncated.whiskering_map_app_app, SSet.Truncated.HomotopyCategory.mk_surjective, SSet.Truncated.StrictSegal.spine_δ_arrow_lt, SSet.Truncated.id_app, SSet.Truncated.spine_map_vertex, SSet.Truncated.Edge.CompStruct.tensor_simplex_fst, SSet.Truncated.Edge.map_associator_hom, SSet.Truncated.Edge.src_eq, SSet.Truncated.rightExtensionInclusion_right_as, Truncated.morphismProperty_eq_top, SSet.Truncated.StrictSegal.spine_δ_arrow_gt, SSet.Truncated.StrictSegal.spineInjective, CategoryTheory.SimplicialObject.isCoskeletal_iff, CategoryTheory.CosimplicialObject.Truncated.whiskering_obj_map_app, SSet.Truncated.Edge.map_whiskerLeft, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_id, SSet.Truncated.Edge.map_snd, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₂, SSet.Truncated.HomotopyCategory.descOfTruncation_map_homMk, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_homMk, SSet.Truncated.Edge.map_id, CategoryTheory.SimplicialObject.Truncated.trunc_obj_map, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_right_as, SSet.Truncated.StrictSegal.spineToSimplex_vertex, Truncated.initial_inclusion, SSet.Truncated.StrictSegal.spine_δ_vertex_ge, SSet.Truncated.StrictSegal.spineToSimplex_edge, SSet.Truncated.spine_arrow, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₃, SSet.Truncated.HomotopyCategory.homToNerveMk_app_one, SSet.Truncated.Edge.mk'_edge, SSet.Truncated.comp_app_assoc, SSet.Truncated.Edge.map_tensorHom, SSet.Truncated.StrictSegal.spineToSimplex_arrow, SSet.Truncated.rightExtensionInclusion_left, SSet.Truncated.spine_vertex, CategoryTheory.SimplicialObject.Truncated.trunc_map_app, SSet.Truncated.mapHomotopyCategory_obj, SSet.Truncated.Edge.map_edge, SSet.Truncated.Edge.id_edge, SSet.Truncated.Path.arrow_src, SSet.horn.spineId_vertex_coe, SSet.Truncated.tensor_map_apply_fst, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_obj, SSet.horn.spineId_arrow_coe, CategoryTheory.SimplicialObject.IsCoskeletal.isRightKanExtension, SSet.Truncated.Edge.tensor_edge, SSet.Truncated.Path.map_vertex, SSet.Truncated.StrictSegal.spine_δ_arrow_eq, CategoryTheory.SimplicialObject.Truncated.whiskering_obj_obj_map, SSet.Subcomplex.liftPath_arrow_coe, SSet.Truncated.HomotopyCategory.BinaryProduct.square, SSet.Truncated.Path₁.arrow_tgt, SSet.Truncated.HomotopyCategory.homToNerveMk_app_edge, SSet.Truncated.StrictSegal.spineToSimplex_interval, SSet.Truncated.hom_ext_iff, SSet.Truncated.Path.arrow_tgt, SSet.Subcomplex.liftPath_vertex_coe, SSet.OneTruncation₂.ofNerve₂.natIso_inv_app_obj_map, SSet.StrictSegal.isPointwiseRightKanExtensionAt.fac_aux₁, SSet.Truncated.Path.mk₂_vertex, SSet.Truncated.IsStrictSegal.spine_bijective, SSet.OneTruncation₂.nerveHomEquiv_apply, SSet.Truncated.HomotopyCategory.homToNerveMk_app_zero, SSet.Truncated.Edge.CompStruct.d₀, SSet.Truncated.Edge.map_whiskerRight, SSet.Truncated.comp_app, SSet.Truncated.Edge.CompStruct.map_simplex, CategoryTheory.CosimplicialObject.Truncated.whiskering_obj_obj_map, SSet.OneTruncation₂.map_obj, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_map, SSet.Truncated.rightExtensionInclusion_hom_app, CategoryTheory.nerve.functorOfNerveMap_obj, SSet.Truncated.Path₁.arrow_src, SSet.Truncated.Edge.CompStruct.d₁, SSet.OneTruncation₂.id_edge, SSet.Truncated.StrictSegal.spine_δ_vertex_lt, SSet.Truncated.HomotopyCategory.descOfTruncation_obj_mk, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_obj, Truncated.initial_incl, SSet.StrictSegal.isRightKanExtension, SSet.Truncated.IsStrictSegal.segal, SSet.Truncated.spine_injective, CategoryTheory.SimplicialObject.Truncated.whiskering_obj_map_app, SSet.Truncated.Edge.CompStruct.idCompId_simplex, SSet.Truncated.Edge.tgt_eq, SSet.Truncated.StrictSegal.spineToSimplex_map

SimplexCategory.Truncated

Definitions

NameCategoryTheorems
instDecidableEqHom 📖CompOp
δ 📖CompOp
δ₂ 📖CompOp
24 mathmath: δ₂_two_comp_σ₂_one_assoc, δ₂_zero_comp_σ₂_zero, SSet.Truncated.Edge.CompStruct.d₂, δ₂_one_comp_σ₂_one, δ₂_zero_comp_δ₂_two_assoc, δ₂_zero_eq_const, δ₂_zero_comp_σ₂_zero_assoc, SSet.Truncated.Edge.src_eq, δ₂_zero_comp_δ₂_two, δ₂_zero_comp_σ₂_one_assoc, δ₂_one_eq_const, δ₂_one_comp_σ₂_zero, SSet.Truncated.HomotopyCategory.homToNerveMk_app_one, SSet.Truncated.Edge.mk'_edge, δ₂_two_comp_σ₂_zero, δ₂_two_comp_σ₂_zero_assoc, δ₂_one_comp_σ₂_one_assoc, δ₂_zero_comp_σ₂_one, SSet.OneTruncation₂.nerveHomEquiv_apply, SSet.Truncated.Edge.CompStruct.d₀, δ₂_one_comp_σ₂_zero_assoc, SSet.Truncated.Edge.CompStruct.d₁, δ₂_two_comp_σ₂_one, SSet.Truncated.Edge.tgt_eq
σ 📖CompOp
σ₂ 📖CompOp
15 mathmath: δ₂_two_comp_σ₂_one_assoc, δ₂_zero_comp_σ₂_zero, δ₂_one_comp_σ₂_one, δ₂_zero_comp_σ₂_zero_assoc, δ₂_zero_comp_σ₂_one_assoc, δ₂_one_comp_σ₂_zero, SSet.Truncated.Edge.id_edge, δ₂_two_comp_σ₂_zero, δ₂_two_comp_σ₂_zero_assoc, δ₂_one_comp_σ₂_one_assoc, δ₂_zero_comp_σ₂_one, δ₂_one_comp_σ₂_zero_assoc, δ₂_two_comp_σ₂_one, SSet.OneTruncation₂.id_edge, SSet.Truncated.Edge.CompStruct.idCompId_simplex

Theorems

NameKindAssumesProvesValidatesDepends On
initial_incl 📖mathematicalCategoryTheory.Functor.Initial
SimplexCategory.Truncated
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
incl
CategoryTheory.Functor.initial_of_natIso
initial_inclusion
CategoryTheory.Functor.initial_of_comp_full_faithful
CategoryTheory.ObjectProperty.full_ι
CategoryTheory.ObjectProperty.faithful_ι
initial_inclusion 📖mathematicalCategoryTheory.Functor.Initial
SimplexCategory.Truncated
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
inclusion
CategoryTheory.zigzag_isConnected
CategoryTheory.Zigzag.trans
CategoryTheory.Zigzag.of_inv
CategoryTheory.Zigzag.of_hom
le_of_not_ge
δ₂_one_comp_σ₂_one 📖mathematicalSimplexCategory.lenCategoryTheory.CategoryStruct.comp
CategoryTheory.ObjectProperty.FullSubcategory
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.FullSubcategory.category
δ₂
σ₂
CategoryTheory.CategoryStruct.id
CategoryTheory.ObjectProperty.hom_ext
SimplexCategory.δ_comp_σ_self
δ₂_one_comp_σ₂_one_assoc 📖mathematicalSimplexCategory.lenCategoryTheory.CategoryStruct.comp
CategoryTheory.ObjectProperty.FullSubcategory
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.FullSubcategory.category
δ₂
σ₂
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
δ₂_one_comp_σ₂_one
δ₂_one_comp_σ₂_zero 📖mathematicalSimplexCategory.lenCategoryTheory.CategoryStruct.comp
CategoryTheory.ObjectProperty.FullSubcategory
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.FullSubcategory.category
δ₂
σ₂
CategoryTheory.CategoryStruct.id
CategoryTheory.ObjectProperty.hom_ext
SimplexCategory.δ_comp_σ_succ
δ₂_one_comp_σ₂_zero_assoc 📖mathematicalSimplexCategory.lenCategoryTheory.CategoryStruct.comp
CategoryTheory.ObjectProperty.FullSubcategory
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.FullSubcategory.category
δ₂
σ₂
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
δ₂_one_comp_σ₂_zero
δ₂_one_eq_const 📖mathematicalδ₂
Hom.tr
SimplexCategory.const
SimplexCategory.len
SimplexCategory.instOfNatToTypeOrderHomFinHAddNatLenOfNat
δ₂_two_comp_σ₂_one 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ObjectProperty.FullSubcategory
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.FullSubcategory.category
δ₂
σ₂
CategoryTheory.CategoryStruct.id
CategoryTheory.ObjectProperty.hom_ext
SimplexCategory.δ_comp_σ_succ'
δ₂_two_comp_σ₂_one_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ObjectProperty.FullSubcategory
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.FullSubcategory.category
δ₂
σ₂
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
δ₂_two_comp_σ₂_one
δ₂_two_comp_σ₂_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ObjectProperty.FullSubcategory
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.FullSubcategory.category
δ₂
σ₂
CategoryTheory.ObjectProperty.hom_ext
SimplexCategory.δ_comp_σ_of_gt'
δ₂_two_comp_σ₂_zero_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ObjectProperty.FullSubcategory
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.FullSubcategory.category
δ₂
σ₂
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ₂_two_comp_σ₂_zero
δ₂_zero_comp_δ₂_two 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ObjectProperty.FullSubcategory
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.FullSubcategory.category
δ₂
δ₂_zero_comp_δ₂_two_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ObjectProperty.FullSubcategory
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.FullSubcategory.category
δ₂
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ₂_zero_comp_δ₂_two
δ₂_zero_comp_σ₂_one 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ObjectProperty.FullSubcategory
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.FullSubcategory.category
δ₂
σ₂
CategoryTheory.ObjectProperty.hom_ext
SimplexCategory.δ_comp_σ_of_le
δ₂_zero_comp_σ₂_one_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ObjectProperty.FullSubcategory
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.FullSubcategory.category
δ₂
σ₂
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ₂_zero_comp_σ₂_one
δ₂_zero_comp_σ₂_zero 📖mathematicalSimplexCategory.lenCategoryTheory.CategoryStruct.comp
CategoryTheory.ObjectProperty.FullSubcategory
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.FullSubcategory.category
δ₂
σ₂
CategoryTheory.CategoryStruct.id
CategoryTheory.ObjectProperty.hom_ext
SimplexCategory.δ_comp_σ_self
δ₂_zero_comp_σ₂_zero_assoc 📖mathematicalSimplexCategory.lenCategoryTheory.CategoryStruct.comp
CategoryTheory.ObjectProperty.FullSubcategory
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ObjectProperty.FullSubcategory.category
δ₂
σ₂
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
δ₂_zero_comp_σ₂_zero
δ₂_zero_eq_const 📖mathematicalδ₂
Hom.tr
SimplexCategory.const
SimplexCategory.len
SimplexCategory.instOfNatToTypeOrderHomFinHAddNatLenOfNat

---

← Back to Index