Documentation Verification Report

SimplicialNerve

📁 Source: Mathlib/AlgebraicTopology/SimplicialNerve.lean

Statistics

MetricCount
DefinitionsSimplicialNerve, SimplicialThickening, I, comp, id, as, compFunctor, functor, functorMap, instCategory, instCategoryHom, instCategoryPath, instCategoryStruct, instSimplicialCategory, orderHom
15
Theoremsext, ext_iff, le, le_right, left, left_le, right, assoc, comp_id, id_comp, compFunctor_obj, comp_I, functor_comp, functor_id, functor_map, functor_obj_as, hom_ext, hom_ext_iff, id_I
19
Total34

CategoryTheory

Definitions

NameCategoryTheorems
SimplicialNerve 📖CompOp
SimplicialThickening 📖CompData
7 mathmath: SimplicialThickening.compFunctor_obj, SimplicialThickening.functor_map, SimplicialThickening.functor_id, SimplicialThickening.functor_obj_as, SimplicialThickening.functor_comp, SimplicialThickening.comp_I, SimplicialThickening.id_I

CategoryTheory.SimplicialThickening

Definitions

NameCategoryTheorems
as 📖CompOp
5 mathmath: hom_ext_iff, functor_map, functor_obj_as, comp_I, id_I
compFunctor 📖CompOp
1 mathmath: compFunctor_obj
functor 📖CompOp
4 mathmath: functor_map, functor_id, functor_obj_as, functor_comp
functorMap 📖CompOp
1 mathmath: functor_map
instCategory 📖CompOp
4 mathmath: functor_map, functor_id, functor_obj_as, functor_comp
instCategoryHom 📖CompOp
2 mathmath: compFunctor_obj, functor_map
instCategoryPath 📖CompOp
instCategoryStruct 📖CompOp
4 mathmath: compFunctor_obj, functor_map, comp_I, id_I
instSimplicialCategory 📖CompOp
4 mathmath: functor_map, functor_id, functor_obj_as, functor_comp
orderHom 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
compFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
Quiver.Hom
CategoryTheory.SimplicialThickening
CategoryTheory.CategoryStruct.toQuiver
instCategoryStruct
CategoryTheory.uniformProd
instCategoryHom
compFunctor
CategoryTheory.CategoryStruct.comp
comp_I 📖mathematicalPath.I
as
CategoryTheory.CategoryStruct.comp
CategoryTheory.SimplicialThickening
instCategoryStruct
Set
Set.instUnion
functor_comp 📖mathematicalfunctor
OrderHom.comp
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.EnrichedFunctor.comp
SSet
SSet.largeCategory
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
CategoryTheory.SimplicialThickening
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
instCategory
instSimplicialCategory
CategoryTheory.EnrichedFunctor.ext
SSet.hom_ext
CategoryTheory.types_ext
CategoryTheory.Functor.ext
Set.image_congr
CategoryTheory.Category.comp_id
hom_ext
functor_id 📖mathematicalfunctor
OrderHom.id
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.EnrichedFunctor.id
SSet
SSet.largeCategory
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
CategoryTheory.SimplicialThickening
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
instCategory
instSimplicialCategory
CategoryTheory.EnrichedFunctor.ext
SSet.hom_ext
CategoryTheory.types_ext
CategoryTheory.Functor.ext
Set.image_congr
Set.image_id'
CategoryTheory.Category.comp_id
functor_map 📖mathematicalCategoryTheory.EnrichedFunctor.map
SSet
SSet.largeCategory
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
CategoryTheory.SimplicialThickening
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
instCategory
instSimplicialCategory
functor
CategoryTheory.nerveMap
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
instCategoryStruct
DFunLike.coe
OrderHom
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
OrderHom.instFunLike
as
instCategoryHom
functorMap
functor_obj_as 📖mathematicalas
CategoryTheory.EnrichedFunctor.obj
SSet
SSet.largeCategory
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
CategoryTheory.SimplicialThickening
CategoryTheory.EnrichedOrdinaryCategory.toEnrichedCategory
instCategory
instSimplicialCategory
functor
DFunLike.coe
OrderHom
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
OrderHom.instFunLike
hom_ext 📖Set
Set.instMembership
Path.I
as
Path.ext
Set.ext
hom_ext_iff 📖mathematicalSet
Set.instMembership
Path.I
as
hom_ext
id_I 📖mathematicalPath.I
as
CategoryTheory.CategoryStruct.id
CategoryTheory.SimplicialThickening
instCategoryStruct
Set
Set.instSingletonSet

CategoryTheory.SimplicialThickening.Path

Definitions

NameCategoryTheorems
I 📖CompOp
6 mathmath: CategoryTheory.SimplicialThickening.hom_ext_iff, ext_iff, right, left, CategoryTheory.SimplicialThickening.comp_I, CategoryTheory.SimplicialThickening.id_I

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖I
ext_iff 📖mathematicalIext
le 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
left_le
right
le_right 📖mathematicalSet
Set.instMembership
I
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
left 📖mathematicalSet
Set.instMembership
I
left_le 📖mathematicalSet
Set.instMembership
I
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
right 📖mathematicalSet
Set.instMembership
I

CategoryTheory.SimplicialThickening.SimplicialCategory

Definitions

NameCategoryTheorems
comp 📖CompOp
3 mathmath: comp_id, assoc, id_comp
id 📖CompOp
2 mathmath: comp_id, id_comp

Theorems

NameKindAssumesProvesValidatesDepends On
assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
Hom
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.MonoidalCategoryStruct.whiskerRight
comp
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
SSet.hom_ext
CategoryTheory.types_ext
CategoryTheory.Functor.ext
CategoryTheory.SimplicialThickening.hom_ext
CategoryTheory.Category.assoc
comp_id 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
Hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.rightUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
id
comp
CategoryTheory.CategoryStruct.id
SSet.hom_ext
CategoryTheory.types_ext
CategoryTheory.Functor.ext
CategoryTheory.SimplicialThickening.hom_ext
CategoryTheory.Category.comp_id
id_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
Hom
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Iso.inv
CategoryTheory.MonoidalCategoryStruct.leftUnitor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
id
comp
CategoryTheory.CategoryStruct.id
SSet.hom_ext
CategoryTheory.types_ext
CategoryTheory.Functor.ext
CategoryTheory.SimplicialThickening.hom_ext
CategoryTheory.Category.id_comp

---

← Back to Index