Documentation Verification Report

Basic

📁 Source: Mathlib/AlgebraicTopology/SimplicialObject/Basic.lean

Statistics

MetricCount
DefinitionsCosimplicialObject, const, drop, leftOp, leftOpRightOpIso, point, toArrow, whiskering, whiskeringObj, mkNotation, trunc, whiskering, augment, const, eqToIso, instCategory, instCategoryAugmented, instCategoryTruncated, truncation, truncationCompTrunc, whiskering, δ, σ, const, drop, point, rightOp, rightOpLeftOpIso, toArrow, whiskering, whiskeringObj, cosk, fullyFaithful, reflective, mkNotation, sk, fullyFaithful, coreflective, trunc, whiskering, augment, const, cosk, coskAdj, diagonal, eqToIso, instCategoryAugmented, instCategoryTruncated, sk, skAdj, truncation, truncationCompTrunc, whiskering, δ, σ, cosimplicialSimplicialEquiv, cosimplicialToSimplicialAugmented, instCategorySimplicialObject, simplicialCosimplicialAugmentedEquiv, simplicialCosimplicialEquiv, simplicialToCosimplicialAugmented, «term_^⦋_⦌», «term__⦋_⦌»
63
Theoremsconst_map_left, const_map_right, const_obj_hom, const_obj_left, const_obj_right, drop_map, drop_obj, hom_ext, hom_ext_iff, leftOpRightOpIso_hom_left, leftOpRightOpIso_hom_right_app, leftOpRightOpIso_inv_left, leftOpRightOpIso_inv_right_app, leftOp_hom_app, leftOp_left_map, leftOp_left_obj, leftOp_right, point_map, point_obj, toArrow_map_left, toArrow_map_right, toArrow_obj_hom, toArrow_obj_left, toArrow_obj_right, whiskering_map_app_left, whiskering_map_app_right, whiskering_obj, instHasColimits, instHasColimitsOfShape, instHasLimits, instHasLimitsOfShape, whiskering_map_app_app, whiskering_obj_map_app, whiskering_obj_obj_map, whiskering_obj_obj_obj, augment_hom_app, augment_hom_zero, augment_left, augment_right, comp_app, comp_left, comp_right_app, eqToIso_refl, hom_ext, hom_ext_iff, id_app, id_left, id_right_app, instHasColimits, instHasColimitsOfShape, instHasLimits, instHasLimitsOfShape, whiskering_map_app_app, whiskering_obj_map_app, whiskering_obj_obj_map, whiskering_obj_obj_obj, δ_comp_δ, δ_comp_δ', δ_comp_δ'', δ_comp_δ''_assoc, δ_comp_δ'_assoc, δ_comp_δ_assoc, δ_comp_δ_self, δ_comp_δ_self', δ_comp_δ_self'_assoc, δ_comp_δ_self_assoc, δ_comp_σ_of_gt, δ_comp_σ_of_gt', δ_comp_σ_of_gt'_assoc, δ_comp_σ_of_gt_assoc, δ_comp_σ_of_le, δ_comp_σ_of_le_assoc, δ_comp_σ_self, δ_comp_σ_self', δ_comp_σ_self'_assoc, δ_comp_σ_self_assoc, δ_comp_σ_succ, δ_comp_σ_succ', δ_comp_σ_succ'_assoc, δ_comp_σ_succ_assoc, δ_naturality, δ_naturality_assoc, σ_comp_σ, σ_comp_σ_assoc, σ_naturality, σ_naturality_assoc, const_map_left, const_map_right, const_obj_hom, const_obj_left, const_obj_right, drop_map, drop_obj, hom_ext, hom_ext_iff, point_map, point_obj, rightOpLeftOpIso_hom_left_app, rightOpLeftOpIso_hom_right, rightOpLeftOpIso_inv_left_app, rightOpLeftOpIso_inv_right, rightOp_hom_app, rightOp_left, rightOp_right_map, rightOp_right_obj, toArrow_map_left, toArrow_map_right, toArrow_obj_hom, toArrow_obj_left, toArrow_obj_right, whiskering_map_app_left, whiskering_map_app_right, whiskering_obj, w₀, w₀_assoc, faithful, full, cosk_reflective, instHasColimits, instHasColimitsOfShape, instHasLimits, instHasLimitsOfShape, faithful, full, sk_coreflective, trunc_map_app, trunc_obj_map, trunc_obj_obj, whiskering_map_app_app, whiskering_obj_map_app, whiskering_obj_obj_map, whiskering_obj_obj_obj, augment_hom_app, augment_hom_zero, augment_left, augment_right, comp_left_app, comp_right, eqToIso_refl, hom_ext, hom_ext_iff, id_left_app, id_right, instHasColimits, instHasColimitsOfShape, instHasLimits, instHasLimitsOfShape, instIsLeftKanExtensionOppositeTruncatedSimplexCategoryObjSkAppTruncatedUnitSkAdjTruncation, instIsRightKanExtensionOppositeTruncatedSimplexCategoryObjCoskAppTruncatedCounitCoskAdjTruncation, whiskering_map_app_app, whiskering_obj_map_app, whiskering_obj_obj_map, whiskering_obj_obj_obj, δ_comp_δ, δ_comp_δ', δ_comp_δ'', δ_comp_δ''_assoc, δ_comp_δ'_assoc, δ_comp_δ_assoc, δ_comp_δ_self, δ_comp_δ_self', δ_comp_δ_self'_assoc, δ_comp_δ_self_assoc, δ_comp_σ_of_gt, δ_comp_σ_of_gt', δ_comp_σ_of_gt'_assoc, δ_comp_σ_of_gt_assoc, δ_comp_σ_of_le, δ_comp_σ_of_le_assoc, δ_comp_σ_self, δ_comp_σ_self', δ_comp_σ_self'_assoc, δ_comp_σ_self_assoc, δ_comp_σ_succ, δ_comp_σ_succ', δ_comp_σ_succ'_assoc, δ_comp_σ_succ_assoc, δ_def, δ_naturality, δ_naturality_assoc, σ_comp_σ, σ_comp_σ_assoc, σ_def, σ_naturality, σ_naturality_assoc, comp_app, cosimplicialSimplicialEquiv_counitIso_hom_app_app, cosimplicialSimplicialEquiv_counitIso_inv_app_app, cosimplicialSimplicialEquiv_functor_map_app, cosimplicialSimplicialEquiv_functor_obj_map, cosimplicialSimplicialEquiv_functor_obj_obj, cosimplicialSimplicialEquiv_inverse_map, cosimplicialSimplicialEquiv_inverse_obj, cosimplicialSimplicialEquiv_unitIso_hom_app, cosimplicialSimplicialEquiv_unitIso_inv_app, cosimplicialToSimplicialAugmented_map, cosimplicialToSimplicialAugmented_obj, id_app, simplicialCosimplicialAugmentedEquiv_functor, simplicialCosimplicialAugmentedEquiv_inverse, simplicialCosimplicialEquiv_counitIso_hom_app_app, simplicialCosimplicialEquiv_counitIso_inv_app_app, simplicialCosimplicialEquiv_functor_map_app, simplicialCosimplicialEquiv_functor_obj_map, simplicialCosimplicialEquiv_functor_obj_obj, simplicialCosimplicialEquiv_inverse_map, simplicialCosimplicialEquiv_inverse_obj, simplicialCosimplicialEquiv_unitIso_hom_app, simplicialCosimplicialEquiv_unitIso_inv_app, simplicialToCosimplicialAugmented_map_left, simplicialToCosimplicialAugmented_map_right, simplicialToCosimplicialAugmented_obj
212
Total275

CategoryTheory

Definitions

NameCategoryTheorems
CosimplicialObject 📖CompOp
90 mathmath: CosimplicialObject.Augmented.leftOpRightOpIso_hom_left, CosimplicialObject.whiskering_obj_obj_obj, CosimplicialObject.comp_app, CosimplicialObject.id_right_app, CosimplicialObject.instHasColimitsOfShape, Idempotents.instIsIdempotentCompleteCosimplicialObject, CosimplicialObject.augment_right, Limits.FormalCoproduct.cosimplicialObjectFunctor_obj_obj, cosimplicialSimplicialEquiv_counitIso_hom_app_app, CosimplicialObject.Augmented.leftOp_right, simplicialCosimplicialEquiv_counitIso_inv_app_app, simplicialCosimplicialEquiv_inverse_map, Arrow.mapAugmentedCechConerve_right, AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_d, CosimplicialObject.augment_hom_app, Limits.FormalCoproduct.cochainComplexFunctor_map_f, CosimplicialObject.Augmented.const_obj_right, CosimplicialObject.instHasColimits, CosimplicialObject.id_app, CosimplicialObject.instHasLimitsOfShape, CosimplicialObject.comp_right_app, simplicialToCosimplicialAugmented_map_left, CosimplicialObject.Augmented.leftOpRightOpIso_inv_left, cosimplicialSimplicialEquiv_functor_obj_obj, simplicialCosimplicialEquiv_unitIso_hom_app, CosimplicialObject.Augmented.whiskering_map_app_left, simplicialCosimplicialEquiv_counitIso_hom_app_app, CosimplicialObject.Augmented.leftOp_left_map, cosimplicialSimplicialEquiv_inverse_obj, CosimplicialObject.Augmented.drop_obj, SimplicialObject.Augmented.rightOp_right_map, CosimplicialObject.Augmented.toArrow_map_right, CosimplicialObject.Augmented.const_map_right, cosimplicialSimplicialEquiv_functor_map_app, cosimplicialSimplicialEquiv_counitIso_inv_app_app, CosimplicialObject.Augmented.toArrow_map_left, Limits.FormalCoproduct.cochainComplexFunctor_obj_d, Arrow.mapAugmentedCechConerve_left, SimplicialObject.Augmented.rightOp_right_obj, CosimplicialObject.Augmented.leftOpRightOpIso_hom_right_app, cosimplicialSimplicialEquiv_unitIso_hom_app, CosimplicialObject.Augmented.toArrow_obj_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_hom_app_app, CosimplicialObject.augment_hom_zero, CosimplicialObject.Augmented.toArrow_obj_right, CosimplicialObject.Augmented.toArrow_obj_hom, cosimplicialSimplicialEquiv_unitIso_inv_app, AlgebraicTopology.alternatingCofaceMapComplex_obj, simplicialCosimplicialEquiv_inverse_obj, simplicialCosimplicialEquiv_functor_map_app, CosimplicialObject.cechConerve_map, CosimplicialObject.Augmented.const_map_left, CosimplicialObject.augment_left, CosimplicialObject.Augmented.hom_ext_iff, CosimplicialObject.Augmented.const_obj_hom, CosimplicialObject.whiskering_obj_map_app, CosimplicialObject.Augmented.point_map, Arrow.augmentedCechConerve_right, simplicialCosimplicialEquiv_unitIso_inv_app, CosimplicialObject.equivalenceRightToLeft_right_app, SimplicialObject.Augmented.rightOp_hom_app, Limits.FormalCoproduct.cosimplicialObjectFunctor_obj_map, CosimplicialObject.Augmented.leftOp_left_obj, SimplicialObject.Augmented.rightOp_left, CosimplicialObject.Augmented.leftOpRightOpIso_inv_right_app, CosimplicialObject.whiskering_map_app_app, CosimplicialObject.equivalenceLeftToRight_left, AlgebraicTopology.alternatingCofaceMapComplex_map, CosimplicialObject.Augmented.whiskering_map_app_right, simplicialCosimplicialEquiv_functor_obj_obj, simplicialToCosimplicialAugmented_map_right, CosimplicialObject.whiskering_obj_obj_map, CosimplicialObject.Augmented.leftOp_hom_app, CosimplicialObject.instHasLimits, cosimplicialToSimplicialAugmented_map, CosimplicialObject.equivalenceRightToLeft_left, cosimplicialSimplicialEquiv_inverse_map, CosimplicialObject.cechConerve_obj, CosimplicialObject.equivalenceLeftToRight_right, Limits.FormalCoproduct.cosimplicialObjectFunctor_map_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_inv_app_app, CosimplicialObject.Augmented.const_obj_left, cosimplicialSimplicialEquiv_functor_obj_map, CosimplicialObject.comp_left, CosimplicialObject.Augmented.point_obj, Arrow.augmentedCechConerve_left, simplicialCosimplicialEquiv_functor_obj_map, Arrow.augmentedCechConerve_hom_app, CosimplicialObject.id_left, CosimplicialObject.Augmented.drop_map
cosimplicialSimplicialEquiv 📖CompOp
10 mathmath: cosimplicialSimplicialEquiv_counitIso_hom_app_app, AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_d, cosimplicialSimplicialEquiv_functor_obj_obj, cosimplicialSimplicialEquiv_inverse_obj, cosimplicialSimplicialEquiv_functor_map_app, cosimplicialSimplicialEquiv_counitIso_inv_app_app, cosimplicialSimplicialEquiv_unitIso_hom_app, cosimplicialSimplicialEquiv_unitIso_inv_app, cosimplicialSimplicialEquiv_inverse_map, cosimplicialSimplicialEquiv_functor_obj_map
cosimplicialToSimplicialAugmented 📖CompOp
3 mathmath: cosimplicialToSimplicialAugmented_obj, simplicialCosimplicialAugmentedEquiv_inverse, cosimplicialToSimplicialAugmented_map
instCategorySimplicialObject 📖CompOp
245 mathmath: AlgebraicTopology.DoldKan.natTransPInfty_app, SimplicialObject.id_left_app, SimplicialObject.whiskering_obj_map_app, AlgebraicTopology.DoldKan.N₁_map_f, AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap, Arrow.augmentedCechNerve_hom_app, SimplicialObject.comp_right, SimplicialObject.Augmented.point_map, AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_inv_app, AlgebraicTopology.DoldKan.identity_N₂, cosimplicialSimplicialEquiv_counitIso_hom_app_app, CosimplicialObject.Augmented.leftOp_right, simplicialCosimplicialEquiv_counitIso_inv_app_app, simplicialCosimplicialEquiv_inverse_map, SimplicialObject.Augmented.toArrow_map_right, SimplicialObject.opFunctor_obj_σ, Preadditive.DoldKan.equivalence_unitIso, SimplicialObject.augment_left, AlgebraicTopology.DoldKan.instIsIsoFunctorSimplicialObjectKaroubiNatTrans, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_succ, SimplicialObject.Augmented.ExtraDegeneracy.s_comp_δ₀_assoc, SimplicialObject.Truncated.cosk.full, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_inv, SimplicialObject.opFunctor_obj_map, SimplicialObject.Split.forget_obj, Arrow.mapAugmentedCechNerve_left, Preadditive.DoldKan.equivalence_functor, SimplicialObject.Augmented.w₀, AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_d, SimplicialObject.instIsRightKanExtensionOppositeTruncatedSimplexCategoryObjCoskAppTruncatedCounitCoskAdjTruncation, SimplicialObject.Augmented.toArrow_map_left, AlgebraicTopology.alternatingFaceMapComplex_obj_d, SimplicialObject.Augmented.ExtraDegeneracy.s'_comp_ε, SimplicialObject.Augmented.toArrow_obj_left, SimplicialObject.Truncated.cosk.faithful, SimplicialObject.Split.forget_map, SimplicialObject.Split.comp_F, AlgebraicTopology.DoldKan.instIsIsoFunctorKaroubiSimplicialObjectNatTrans, AlgebraicTopology.DoldKan.N₁_obj_p, SimplicialObject.opFunctor_map_app, Preadditive.DoldKan.equivalence_counitIso, SimplicialObject.Augmented.rightOpLeftOpIso_inv_right, AlgebraicTopology.karoubi_alternatingFaceMapComplex_d, AlgebraicTopology.alternatingFaceMapComplex_map_f, SimplicialObject.Augmented.ExtraDegeneracy.s_comp_δ, SimplicialObject.Augmented.const_obj_hom, Idempotents.DoldKan.hε, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyHomInvId, SimplicialObject.opEquivalence_counitIso, SimplicialObject.Augmented.whiskering_map_app_right, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, Idempotents.DoldKan.N₂_map_isoΓ₀_hom_app_f, simplicialToCosimplicialAugmented_map_left, AlgebraicTopology.DoldKan.map_Hσ, id_app, AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans, SSet.Augmented.stdSimplex_map_right, AlgebraicTopology.DoldKan.Γ₀_obj_map, cosimplicialSimplicialEquiv_functor_obj_obj, SimplicialObject.Augmented.const_map_left, simplicialCosimplicialEquiv_unitIso_hom_app, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app_f_f, SSet.Augmented.stdSimplex_obj_left, SimplicialObject.Augmented.const_obj_right, AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty_assoc, Idempotents.instIsIdempotentCompleteSimplicialObject, Idempotents.DoldKan.equivalence_counitIso, AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso_hom_app, simplicialCosimplicialEquiv_counitIso_hom_app_app, CosimplicialObject.Augmented.leftOp_left_map, cosimplicialSimplicialEquiv_inverse_obj, SimplicialObject.isoCoskOfIsCoskeletal_hom, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_zero, SimplicialObject.instHasLimitsOfShape, SimplicialObject.Augmented.ExtraDegeneracy.s₀_comp_δ₁_assoc, AlgebraicTopology.inclusionOfMooreComplex_app, AlgebraicTopology.DoldKan.Γ₂_obj_X_map, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_inv_f_f, SimplicialObject.augment_right, SimplicialObject.augment_hom_zero, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, SimplicialObject.Augmented.rightOp_right_map, Idempotents.DoldKan.equivalence_inverse, AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f, AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, SimplicialObject.Splitting.ofIso_isColimit', SimplicialObject.Truncated.sk.full, cosimplicialSimplicialEquiv_functor_map_app, AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_hom_app, Limits.FormalCoproduct.cechFunctor_obj, AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubi, SimplicialObject.Augmented.hom_ext_iff, AlgebraicTopology.DoldKan.map_PInfty_f, SimplicialObject.Augmented.rightOpLeftOpIso_inv_left_app, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, cosimplicialSimplicialEquiv_counitIso_inv_app_app, SimplicialObject.augment_hom_app, SimplicialObject.Augmented.rightOpLeftOpIso_hom_left_app, AlgebraicTopology.DoldKan.N₂Γ₂_compatible_with_N₁Γ₀, SSet.Augmented.stdSimplex_obj_right, AlgebraicTopology.normalizedMooreComplex_objD, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, SimplicialObject.Splitting.ofIso_ι, SimplicialObject.opFunctor_obj_δ, SimplicialObject.Augmented.const_map_right, AlgebraicTopology.DoldKan.whiskerLeft_toKaroubi_N₂Γ₂_hom, SimplicialObject.instIsIsoAppUnitTruncatedCoskAdj, AlgebraicTopology.normalizedMooreComplex_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, AlgebraicTopology.DoldKan.Γ₀_map_app, SimplicialObject.comp_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, Idempotents.DoldKan.N_obj, AlgebraicTopology.DoldKan.toKaroubiCompN₂IsoN₁_hom_app, SimplicialObject.whiskering_map_app_app, SimplicialObject.Augmented.rightOp_right_obj, SimplicialObject.Augmented.rightOpLeftOpIso_hom_right, Limits.FormalCoproduct.cechFunctor_map_app, cosimplicialSimplicialEquiv_unitIso_hom_app, AlgebraicTopology.DoldKan.map_P, Arrow.augmentedCechNerve_left, Idempotents.DoldKan.η_inv_app_f, SimplicialObject.Augmented.whiskering_map_app_left, SimplicialObject.Augmented.ExtraDegeneracy.s_comp_σ, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, AlgebraicTopology.DoldKan.toKaroubiCompN₂IsoN₁_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, SimplicialObject.Augmented.drop_obj, SimplicialObject.equivalenceRightToLeft_right, comp_app, SimplicialObject.Augmented.ExtraDegeneracy.s₀_comp_δ₁, SimplicialObject.cechNerve_obj, AlgebraicTopology.DoldKan.natTransP_app, AlgebraicTopology.DoldKan.N₁_obj_X, AlgebraicTopology.map_alternatingFaceMapComplex, SimplicialObject.Augmented.ExtraDegeneracy.s_comp_δ_assoc, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap, AlgebraicTopology.DoldKan.Γ₀_obj_obj, cosimplicialSimplicialEquiv_unitIso_inv_app, SimplicialObject.opFunctorCompOpFunctorIso_hom_app_app, Arrow.augmentedCechNerve_right, SimplicialObject.Augmented.w₀_assoc, SimplicialObject.cechNerve_map, SimplicialObject.whiskering_obj_obj_obj, SimplicialObject.Augmented.ExtraDegeneracy.s_comp_σ_assoc, SimplicialObject.opEquivalence_unitIso, Idempotents.DoldKan.Γ_obj_map, SimplicialObject.Augmented.const_obj_left, simplicialCosimplicialEquiv_inverse_obj, AlgebraicTopology.DoldKan.natTransPInfty_f_app, Idempotents.DoldKan.Γ_obj_obj, simplicialCosimplicialEquiv_functor_map_app, AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso_inv_app, AlgebraicTopology.DoldKan.instMonoChainComplexNatInclusionOfMooreComplexMap, SSet.Augmented.stdSimplex_obj_hom_app, SimplicialObject.whiskering_obj_obj_map, Abelian.DoldKan.equivalence_inverse, AlgebraicTopology.DoldKan.instReflectsIsomorphismsSimplicialObjectKaroubiChainComplexNatN₁, SimplicialObject.instHasColimitsOfShape, SimplicialObject.Augmented.ExtraDegeneracy.s'_comp_ε_assoc, SimplicialObject.equivalenceRightToLeft_left, SimplicialObject.opFunctorCompOpFunctorIso_inv_app_app, SimplicialObject.Augmented.ExtraDegeneracy.s_comp_δ₀, SimplicialObject.Augmented.ExtraDegeneracy.const_s, simplicialCosimplicialEquiv_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyInvHomId, Preadditive.DoldKan.equivalence_inverse, AlgebraicTopology.DoldKan.map_Q, SimplicialObject.Truncated.cosk_reflective, AlgebraicTopology.DoldKan.N₂_obj_p_f, AlgebraicTopology.DoldKan.N₂_obj_X_X, Idempotents.DoldKan.isoN₁_hom_app_f, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap_assoc, SimplicialObject.Augmented.rightOp_hom_app, SimplicialObject.Augmented.point_obj, SimplicialObject.Split.natTransCofanInj_app, CosimplicialObject.Augmented.leftOp_left_obj, SimplicialObject.Augmented.rightOp_left, SimplicialObject.Truncated.sk_coreflective, SSet.Augmented.stdSimplex_map_left, Idempotents.DoldKan.equivalence_functor, SimplicialObject.Truncated.sk.faithful, AlgebraicTopology.DoldKan.N₂_obj_X_d, SimplicialObject.Augmented.toArrow_obj_hom, SimplicialObject.opEquivalence_inverse, Abelian.DoldKan.equivalence_functor, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, AlgebraicTopology.DoldKan.karoubi_PInfty_f, simplicialCosimplicialEquiv_functor_obj_obj, Idempotents.DoldKan.Γ_map_app, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, SimplicialObject.id_right, SimplicialObject.instIsLeftKanExtensionOppositeTruncatedSimplexCategoryObjSkAppTruncatedUnitSkAdjTruncation, simplicialToCosimplicialAugmented_map_right, CosimplicialObject.Augmented.leftOp_hom_app, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app, cosimplicialToSimplicialAugmented_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, Abelian.DoldKan.comparisonN_hom_app_f, SimplicialObject.Augmented.drop_map, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f, cosimplicialSimplicialEquiv_inverse_map, AlgebraicTopology.DoldKan.Γ₂_obj_X_obj, AlgebraicTopology.DoldKan.Γ₂_map_f_app, SimplicialObject.isCoskeletal_iff_isIso, SimplicialObject.augmentedCechNerve_obj_right, SimplicialObject.augmentedCechNerve_map_left_app, AlgebraicTopology.DoldKan.Γ₂N₁_inv, SimplicialObject.augmentedCechNerve_obj_left_map, AlgebraicTopology.DoldKan.instReflectsIsomorphismsKaroubiSimplicialObjectChainComplexNatN₂, SimplicialObject.opEquivalence_functor, AlgebraicTopology.DoldKan.identity_N₂_objectwise, AlgebraicTopology.inclusionOfMooreComplexMap_f, Idempotents.DoldKan.hη, SimplicialObject.augmentedCechNerve_obj_left_obj, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app_f_f, AlgebraicTopology.alternatingFaceMapComplex_obj_X, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f, SimplicialObject.Split.id_F, AlgebraicTopology.DoldKan.map_hσ', AlgebraicTopology.DoldKan.N₂_map_f_f, SimplicialObject.instHasLimits, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_hom, AlgebraicTopology.DoldKan.N₁Γ₀_app, cosimplicialSimplicialEquiv_functor_obj_map, Idempotents.DoldKan.N_map, Abelian.DoldKan.comparisonN_inv_app_f, SimplicialObject.equivalenceLeftToRight_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_obj, SimplicialObject.augmentedCechNerve_obj_hom_app, SimplicialObject.augmentedCechNerve_map_right, Arrow.mapAugmentedCechNerve_right, AlgebraicTopology.DoldKan.Γ₂N₂_inv, Idempotents.DoldKan.η_hom_app_f, AlgebraicTopology.normalizedMooreComplex_obj, simplicialCosimplicialEquiv_functor_obj_map, AlgebraicTopology.DoldKan.natTransQ_app, AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app, SimplicialObject.instHasColimits, SimplicialObject.equivalenceLeftToRight_right, Idempotents.DoldKan.equivalence_unitIso
simplicialCosimplicialAugmentedEquiv 📖CompOp
2 mathmath: simplicialCosimplicialAugmentedEquiv_inverse, simplicialCosimplicialAugmentedEquiv_functor
simplicialCosimplicialEquiv 📖CompOp
9 mathmath: simplicialCosimplicialEquiv_counitIso_inv_app_app, simplicialCosimplicialEquiv_inverse_map, simplicialCosimplicialEquiv_unitIso_hom_app, simplicialCosimplicialEquiv_counitIso_hom_app_app, simplicialCosimplicialEquiv_inverse_obj, simplicialCosimplicialEquiv_functor_map_app, simplicialCosimplicialEquiv_unitIso_inv_app, simplicialCosimplicialEquiv_functor_obj_obj, simplicialCosimplicialEquiv_functor_obj_map
simplicialToCosimplicialAugmented 📖CompOp
4 mathmath: simplicialToCosimplicialAugmented_map_left, simplicialToCosimplicialAugmented_obj, simplicialToCosimplicialAugmented_map_right, simplicialCosimplicialAugmentedEquiv_functor

Theorems

NameKindAssumesProvesValidatesDepends On
comp_app 📖mathematicalNatTrans.app
Opposite
SimplexCategory
Category.opposite
SimplexCategory.smallCategory
CategoryStruct.comp
SimplicialObject
Category.toCategoryStruct
instCategorySimplicialObject
Functor.obj
cosimplicialSimplicialEquiv_counitIso_hom_app_app 📖mathematicalNatTrans.app
Opposite
SimplexCategory
Category.opposite
SimplexCategory.smallCategory
Functor.obj
Functor
Functor.category
Functor.comp
Functor.opInv
Functor.opHom
Functor.id
Iso.hom
Equivalence.counitIso
CosimplicialObject
SimplicialObject
CosimplicialObject.instCategory
instCategorySimplicialObject
cosimplicialSimplicialEquiv
CategoryStruct.id
Category.toCategoryStruct
cosimplicialSimplicialEquiv_counitIso_inv_app_app 📖mathematicalNatTrans.app
Opposite
SimplexCategory
Category.opposite
SimplexCategory.smallCategory
Functor.obj
Functor
Functor.category
Functor.id
Functor.comp
Functor.opInv
Functor.opHom
Iso.inv
Equivalence.counitIso
CosimplicialObject
SimplicialObject
CosimplicialObject.instCategory
instCategorySimplicialObject
cosimplicialSimplicialEquiv
CategoryStruct.id
Category.toCategoryStruct
cosimplicialSimplicialEquiv_functor_map_app 📖mathematicalNatTrans.app
Opposite
SimplexCategory
Category.opposite
SimplexCategory.smallCategory
Functor.op
Opposite.unop
Functor
Functor.map
Functor.category
Equivalence.functor
CosimplicialObject
SimplicialObject
CosimplicialObject.instCategory
instCategorySimplicialObject
cosimplicialSimplicialEquiv
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.obj
Quiver.Hom.unop
cosimplicialSimplicialEquiv_functor_obj_map 📖mathematicalFunctor.map
Opposite
SimplexCategory
Category.opposite
SimplexCategory.smallCategory
Functor.obj
Functor
Functor.category
Equivalence.functor
CosimplicialObject
SimplicialObject
CosimplicialObject.instCategory
instCategorySimplicialObject
cosimplicialSimplicialEquiv
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
Quiver.Hom.unop
cosimplicialSimplicialEquiv_functor_obj_obj 📖mathematicalFunctor.obj
Opposite
SimplexCategory
Category.opposite
SimplexCategory.smallCategory
Functor
Functor.category
Equivalence.functor
CosimplicialObject
SimplicialObject
CosimplicialObject.instCategory
instCategorySimplicialObject
cosimplicialSimplicialEquiv
Opposite.op
Opposite.unop
cosimplicialSimplicialEquiv_inverse_map 📖mathematicalFunctor.map
Functor
Opposite
SimplexCategory
Category.opposite
SimplexCategory.smallCategory
Functor.category
Equivalence.inverse
CosimplicialObject
SimplicialObject
CosimplicialObject.instCategory
instCategorySimplicialObject
cosimplicialSimplicialEquiv
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.unop
Quiver.Hom.unop
Functor.obj
Opposite.op
NatTrans.app
cosimplicialSimplicialEquiv_inverse_obj 📖mathematicalFunctor.obj
Functor
Opposite
SimplexCategory
Category.opposite
SimplexCategory.smallCategory
Functor.category
Equivalence.inverse
CosimplicialObject
SimplicialObject
CosimplicialObject.instCategory
instCategorySimplicialObject
cosimplicialSimplicialEquiv
Opposite.op
Functor.unop
cosimplicialSimplicialEquiv_unitIso_hom_app 📖mathematicalNatTrans.app
Opposite
Functor
SimplexCategory
SimplexCategory.smallCategory
Category.opposite
Functor.category
Functor.id
Functor.comp
Functor.opHom
Functor.opInv
Iso.hom
Equivalence.unitIso
CosimplicialObject
SimplicialObject
CosimplicialObject.instCategory
instCategorySimplicialObject
cosimplicialSimplicialEquiv
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.unop
Functor.op
Opposite.unop
Functor.opUnopIso
cosimplicialSimplicialEquiv_unitIso_inv_app 📖mathematicalNatTrans.app
Opposite
Functor
SimplexCategory
SimplexCategory.smallCategory
Category.opposite
Functor.category
Functor.comp
Functor.opHom
Functor.opInv
Functor.id
Iso.inv
Equivalence.unitIso
CosimplicialObject
SimplicialObject
CosimplicialObject.instCategory
instCategorySimplicialObject
cosimplicialSimplicialEquiv
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
Functor.unop
Functor.op
Functor.opUnopIso
cosimplicialToSimplicialAugmented_map 📖mathematicalFunctor.map
CosimplicialObject.Augmented
Opposite
Category.opposite
CosimplicialObject.instCategoryAugmented
SimplicialObject.Augmented
SimplicialObject.instCategoryAugmented
cosimplicialToSimplicialAugmented
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
CosimplicialObject.Augmented.leftOp
SimplicialObject
instCategorySimplicialObject
Functor.id
SimplicialObject.const
NatTrans.leftOp
SimplexCategory
SimplexCategory.smallCategory
Comma.right
CosimplicialObject
CosimplicialObject.instCategory
CosimplicialObject.const
CommaMorphism.right
Quiver.Hom.unop
Comma.left
CommaMorphism.left
cosimplicialToSimplicialAugmented_obj 📖mathematicalFunctor.obj
CosimplicialObject.Augmented
Opposite
Category.opposite
CosimplicialObject.instCategoryAugmented
SimplicialObject.Augmented
SimplicialObject.instCategoryAugmented
cosimplicialToSimplicialAugmented
Opposite.op
CosimplicialObject.Augmented.leftOp
id_app 📖mathematicalNatTrans.app
Opposite
SimplexCategory
Category.opposite
SimplexCategory.smallCategory
CategoryStruct.id
SimplicialObject
Category.toCategoryStruct
instCategorySimplicialObject
Functor.obj
simplicialCosimplicialAugmentedEquiv_functor 📖mathematicalEquivalence.functor
Opposite
SimplicialObject.Augmented
CosimplicialObject.Augmented
Category.opposite
SimplicialObject.instCategoryAugmented
CosimplicialObject.instCategoryAugmented
simplicialCosimplicialAugmentedEquiv
simplicialToCosimplicialAugmented
simplicialCosimplicialAugmentedEquiv_inverse 📖mathematicalEquivalence.inverse
Opposite
SimplicialObject.Augmented
CosimplicialObject.Augmented
Category.opposite
SimplicialObject.instCategoryAugmented
CosimplicialObject.instCategoryAugmented
simplicialCosimplicialAugmentedEquiv
cosimplicialToSimplicialAugmented
simplicialCosimplicialEquiv_counitIso_hom_app_app 📖mathematicalNatTrans.app
SimplexCategory
SimplexCategory.smallCategory
Opposite
Category.opposite
Functor.obj
Functor
Functor.category
Functor.comp
Opposite.op
Functor.leftOp
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
NatTrans.leftOp
Functor.rightOp
Opposite.unop
NatTrans.rightOp
Quiver.Hom.unop
Functor.id
Iso.hom
Equivalence.counitIso
SimplicialObject
CosimplicialObject
instCategorySimplicialObject
CosimplicialObject.instCategory
simplicialCosimplicialEquiv
CategoryStruct.id
simplicialCosimplicialEquiv_counitIso_inv_app_app 📖mathematicalNatTrans.app
SimplexCategory
SimplexCategory.smallCategory
Opposite
Category.opposite
Functor.obj
Functor
Functor.category
Functor.id
Functor.comp
Opposite.op
Functor.leftOp
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
NatTrans.leftOp
Functor.rightOp
Opposite.unop
NatTrans.rightOp
Quiver.Hom.unop
Iso.inv
Equivalence.counitIso
SimplicialObject
CosimplicialObject
instCategorySimplicialObject
CosimplicialObject.instCategory
simplicialCosimplicialEquiv
CategoryStruct.id
simplicialCosimplicialEquiv_functor_map_app 📖mathematicalNatTrans.app
SimplexCategory
SimplexCategory.smallCategory
Opposite
Category.opposite
Functor.rightOp
Opposite.unop
Functor
Functor.map
Functor.category
Equivalence.functor
SimplicialObject
CosimplicialObject
instCategorySimplicialObject
CosimplicialObject.instCategory
simplicialCosimplicialEquiv
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.obj
Opposite.op
Quiver.Hom.unop
simplicialCosimplicialEquiv_functor_obj_map 📖mathematicalFunctor.map
SimplexCategory
SimplexCategory.smallCategory
Opposite
Category.opposite
Functor.obj
Functor
Functor.category
Equivalence.functor
SimplicialObject
CosimplicialObject
instCategorySimplicialObject
CosimplicialObject.instCategory
simplicialCosimplicialEquiv
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
Opposite.op
simplicialCosimplicialEquiv_functor_obj_obj 📖mathematicalFunctor.obj
SimplexCategory
SimplexCategory.smallCategory
Opposite
Category.opposite
Functor
Functor.category
Equivalence.functor
SimplicialObject
CosimplicialObject
instCategorySimplicialObject
CosimplicialObject.instCategory
simplicialCosimplicialEquiv
Opposite.op
Opposite.unop
simplicialCosimplicialEquiv_inverse_map 📖mathematicalFunctor.map
Functor
SimplexCategory
SimplexCategory.smallCategory
Opposite
Category.opposite
Functor.category
Equivalence.inverse
SimplicialObject
CosimplicialObject
instCategorySimplicialObject
CosimplicialObject.instCategory
simplicialCosimplicialEquiv
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.leftOp
NatTrans.leftOp
simplicialCosimplicialEquiv_inverse_obj 📖mathematicalFunctor.obj
Functor
SimplexCategory
SimplexCategory.smallCategory
Opposite
Category.opposite
Functor.category
Equivalence.inverse
SimplicialObject
CosimplicialObject
instCategorySimplicialObject
CosimplicialObject.instCategory
simplicialCosimplicialEquiv
Opposite.op
Functor.leftOp
simplicialCosimplicialEquiv_unitIso_hom_app 📖mathematicalNatTrans.app
Opposite
Functor
SimplexCategory
Category.opposite
SimplexCategory.smallCategory
Functor.category
Functor.id
Functor.comp
Functor.rightOp
Opposite.unop
NatTrans.rightOp
Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.op
Functor.leftOp
Quiver.Hom.op
NatTrans.leftOp
Iso.hom
Equivalence.unitIso
SimplicialObject
CosimplicialObject
instCategorySimplicialObject
CosimplicialObject.instCategory
simplicialCosimplicialEquiv
Functor.rightOpLeftOpIso
simplicialCosimplicialEquiv_unitIso_inv_app 📖mathematicalNatTrans.app
Opposite
Functor
SimplexCategory
Category.opposite
SimplexCategory.smallCategory
Functor.category
Functor.comp
Functor.rightOp
Opposite.unop
NatTrans.rightOp
Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.op
Functor.leftOp
Quiver.Hom.op
NatTrans.leftOp
Functor.id
Iso.inv
Equivalence.unitIso
SimplicialObject
CosimplicialObject
instCategorySimplicialObject
CosimplicialObject.instCategory
simplicialCosimplicialEquiv
Functor.rightOpLeftOpIso
simplicialToCosimplicialAugmented_map_left 📖mathematicalCommaMorphism.left
Opposite
Category.opposite
CosimplicialObject
CosimplicialObject.instCategory
CosimplicialObject.const
Functor.id
SimplicialObject.Augmented.rightOp
Opposite.unop
SimplicialObject.Augmented
Functor.map
SimplicialObject.instCategoryAugmented
CosimplicialObject.Augmented
CosimplicialObject.instCategoryAugmented
simplicialToCosimplicialAugmented
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
Comma.right
SimplicialObject
instCategorySimplicialObject
SimplicialObject.const
CommaMorphism.right
Quiver.Hom.unop
simplicialToCosimplicialAugmented_map_right 📖mathematicalCommaMorphism.right
Opposite
Category.opposite
CosimplicialObject
CosimplicialObject.instCategory
CosimplicialObject.const
Functor.id
SimplicialObject.Augmented.rightOp
Opposite.unop
SimplicialObject.Augmented
Functor.map
SimplicialObject.instCategoryAugmented
CosimplicialObject.Augmented
CosimplicialObject.instCategoryAugmented
simplicialToCosimplicialAugmented
NatTrans.rightOp
SimplexCategory
SimplexCategory.smallCategory
Comma.left
SimplicialObject
instCategorySimplicialObject
SimplicialObject.const
CommaMorphism.left
Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
simplicialToCosimplicialAugmented_obj 📖mathematicalFunctor.obj
Opposite
SimplicialObject.Augmented
Category.opposite
SimplicialObject.instCategoryAugmented
CosimplicialObject.Augmented
CosimplicialObject.instCategoryAugmented
simplicialToCosimplicialAugmented
SimplicialObject.Augmented.rightOp
Opposite.unop

CategoryTheory.CosimplicialObject

Definitions

NameCategoryTheorems
augment 📖CompOp
4 mathmath: augment_right, augment_hom_app, augment_hom_zero, augment_left
const 📖CompOp
49 mathmath: Augmented.leftOpRightOpIso_hom_left, id_right_app, augment_right, Augmented.leftOp_right, CategoryTheory.Arrow.mapAugmentedCechConerve_right, augment_hom_app, Augmented.const_obj_right, comp_right_app, CategoryTheory.simplicialToCosimplicialAugmented_map_left, Augmented.leftOpRightOpIso_inv_left, Augmented.whiskering_map_app_left, Augmented.leftOp_left_map, Augmented.drop_obj, CategoryTheory.SimplicialObject.Augmented.rightOp_right_map, Augmented.toArrow_map_right, Augmented.const_map_right, Augmented.toArrow_map_left, CategoryTheory.Arrow.mapAugmentedCechConerve_left, CategoryTheory.SimplicialObject.Augmented.rightOp_right_obj, Augmented.leftOpRightOpIso_hom_right_app, Augmented.toArrow_obj_left, augment_hom_zero, Augmented.toArrow_obj_right, Augmented.toArrow_obj_hom, Augmented.const_map_left, augment_left, Augmented.hom_ext_iff, Augmented.const_obj_hom, Augmented.point_map, CategoryTheory.Arrow.augmentedCechConerve_right, equivalenceRightToLeft_right_app, CategoryTheory.SimplicialObject.Augmented.rightOp_hom_app, Augmented.leftOp_left_obj, CategoryTheory.SimplicialObject.Augmented.rightOp_left, Augmented.leftOpRightOpIso_inv_right_app, equivalenceLeftToRight_left, Augmented.whiskering_map_app_right, CategoryTheory.simplicialToCosimplicialAugmented_map_right, Augmented.leftOp_hom_app, CategoryTheory.cosimplicialToSimplicialAugmented_map, equivalenceRightToLeft_left, equivalenceLeftToRight_right, Augmented.const_obj_left, comp_left, Augmented.point_obj, CategoryTheory.Arrow.augmentedCechConerve_left, CategoryTheory.Arrow.augmentedCechConerve_hom_app, id_left, Augmented.drop_map
eqToIso 📖CompOp
1 mathmath: eqToIso_refl
instCategory 📖CompOp
90 mathmath: Augmented.leftOpRightOpIso_hom_left, whiskering_obj_obj_obj, comp_app, id_right_app, instHasColimitsOfShape, CategoryTheory.Idempotents.instIsIdempotentCompleteCosimplicialObject, augment_right, CategoryTheory.Limits.FormalCoproduct.cosimplicialObjectFunctor_obj_obj, CategoryTheory.cosimplicialSimplicialEquiv_counitIso_hom_app_app, Augmented.leftOp_right, CategoryTheory.simplicialCosimplicialEquiv_counitIso_inv_app_app, CategoryTheory.simplicialCosimplicialEquiv_inverse_map, CategoryTheory.Arrow.mapAugmentedCechConerve_right, AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_d, augment_hom_app, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_map_f, Augmented.const_obj_right, instHasColimits, id_app, instHasLimitsOfShape, comp_right_app, CategoryTheory.simplicialToCosimplicialAugmented_map_left, Augmented.leftOpRightOpIso_inv_left, CategoryTheory.cosimplicialSimplicialEquiv_functor_obj_obj, CategoryTheory.simplicialCosimplicialEquiv_unitIso_hom_app, Augmented.whiskering_map_app_left, CategoryTheory.simplicialCosimplicialEquiv_counitIso_hom_app_app, Augmented.leftOp_left_map, CategoryTheory.cosimplicialSimplicialEquiv_inverse_obj, Augmented.drop_obj, CategoryTheory.SimplicialObject.Augmented.rightOp_right_map, Augmented.toArrow_map_right, Augmented.const_map_right, CategoryTheory.cosimplicialSimplicialEquiv_functor_map_app, CategoryTheory.cosimplicialSimplicialEquiv_counitIso_inv_app_app, Augmented.toArrow_map_left, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_obj_d, CategoryTheory.Arrow.mapAugmentedCechConerve_left, CategoryTheory.SimplicialObject.Augmented.rightOp_right_obj, Augmented.leftOpRightOpIso_hom_right_app, CategoryTheory.cosimplicialSimplicialEquiv_unitIso_hom_app, Augmented.toArrow_obj_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_hom_app_app, augment_hom_zero, Augmented.toArrow_obj_right, Augmented.toArrow_obj_hom, CategoryTheory.cosimplicialSimplicialEquiv_unitIso_inv_app, AlgebraicTopology.alternatingCofaceMapComplex_obj, CategoryTheory.simplicialCosimplicialEquiv_inverse_obj, CategoryTheory.simplicialCosimplicialEquiv_functor_map_app, cechConerve_map, Augmented.const_map_left, augment_left, Augmented.hom_ext_iff, Augmented.const_obj_hom, whiskering_obj_map_app, Augmented.point_map, CategoryTheory.Arrow.augmentedCechConerve_right, CategoryTheory.simplicialCosimplicialEquiv_unitIso_inv_app, equivalenceRightToLeft_right_app, CategoryTheory.SimplicialObject.Augmented.rightOp_hom_app, CategoryTheory.Limits.FormalCoproduct.cosimplicialObjectFunctor_obj_map, Augmented.leftOp_left_obj, CategoryTheory.SimplicialObject.Augmented.rightOp_left, Augmented.leftOpRightOpIso_inv_right_app, whiskering_map_app_app, equivalenceLeftToRight_left, AlgebraicTopology.alternatingCofaceMapComplex_map, Augmented.whiskering_map_app_right, CategoryTheory.simplicialCosimplicialEquiv_functor_obj_obj, CategoryTheory.simplicialToCosimplicialAugmented_map_right, whiskering_obj_obj_map, Augmented.leftOp_hom_app, instHasLimits, CategoryTheory.cosimplicialToSimplicialAugmented_map, equivalenceRightToLeft_left, CategoryTheory.cosimplicialSimplicialEquiv_inverse_map, cechConerve_obj, equivalenceLeftToRight_right, CategoryTheory.Limits.FormalCoproduct.cosimplicialObjectFunctor_map_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_inv_app_app, Augmented.const_obj_left, CategoryTheory.cosimplicialSimplicialEquiv_functor_obj_map, comp_left, Augmented.point_obj, CategoryTheory.Arrow.augmentedCechConerve_left, CategoryTheory.simplicialCosimplicialEquiv_functor_obj_map, CategoryTheory.Arrow.augmentedCechConerve_hom_app, id_left, Augmented.drop_map
instCategoryAugmented 📖CompOp
63 mathmath: Augmented.leftOpRightOpIso_hom_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, id_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompPointIso_hom_app, Augmented.const_obj_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_obj, comp_right_app, CategoryTheory.simplicialToCosimplicialAugmented_map_left, Augmented.leftOpRightOpIso_inv_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_left, Augmented.whiskering_map_app_left, cechConerveEquiv_symm_apply, Augmented.drop_obj, augmentedCechConerve_obj, Augmented.toArrow_map_right, Augmented.const_map_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompPointIso_inv_app, Augmented.toArrow_map_left, Augmented.leftOpRightOpIso_hom_right_app, Augmented.toArrow_obj_left, CategoryTheory.cosimplicialToSimplicialAugmented_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_hom_app_app, Augmented.toArrow_obj_right, Augmented.toArrow_obj_hom, Augmented.const_map_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, augmentedCechConerve_map, Augmented.const_obj_hom, Augmented.point_map, equivalenceRightToLeft_right_app, CategoryTheory.simplicialToCosimplicialAugmented_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_left, Augmented.leftOpRightOpIso_inv_right_app, equivalenceLeftToRight_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_left, Augmented.whiskering_map_app_right, CategoryTheory.simplicialToCosimplicialAugmented_map_right, CategoryTheory.simplicialCosimplicialAugmentedEquiv_inverse, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, CategoryTheory.simplicialCosimplicialAugmentedEquiv_functor, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_map, CategoryTheory.cosimplicialToSimplicialAugmented_map, equivalenceRightToLeft_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_right, Augmented.whiskering_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_right_app, equivalenceLeftToRight_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_inv_app_app, Augmented.const_obj_left, cechConerveEquiv_apply, comp_left, Augmented.point_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app, id_left, Augmented.drop_map
instCategoryTruncated 📖CompOp
8 mathmath: Truncated.whiskering_obj_obj_obj, Truncated.whiskering_map_app_app, Truncated.whiskering_obj_map_app, Truncated.instHasColimits, Truncated.instHasLimitsOfShape, Truncated.instHasColimitsOfShape, Truncated.instHasLimits, Truncated.whiskering_obj_obj_map
truncation 📖CompOp
truncationCompTrunc 📖CompOp
whiskering 📖CompOp
4 mathmath: whiskering_obj_obj_obj, whiskering_obj_map_app, whiskering_map_app_app, whiskering_obj_obj_map
δ 📖CompOp
55 mathmath: δ_comp_δ_self_assoc, SSet.PtSimplex.RelStruct.δ_map_of_lt, δ_comp_δ_self', δ_comp_δ''_assoc, δ_comp_δ_assoc, SSet.stdSimplex.faceSingletonIso_zero_hom_comp_ι_eq_δ, δ_comp_δ', SSet.PtSimplex.MulStruct.δ_map_of_gt, δ_comp_σ_self', SSet.PtSimplex.RelStruct.δ_castSucc_map, δ_comp_σ_self_assoc, δ_comp_δ, SSet.stdSimplex.range_δ, SSet.PtSimplex.RelStruct.δ_castSucc_map_assoc, SSet.PtSimplex.MulStruct.δ_succ_succ_map_assoc, SSet.PtSimplex.MulStruct.δ_succ_succ_map, SSet.stdSimplex.faceSingletonIso_zero_hom_comp_ι_eq_δ_assoc, δ_naturality_assoc, SSet.PtSimplex.MulStruct.δ_succ_castSucc_map, δ_comp_σ_succ_assoc, δ_comp_σ_of_gt_assoc, δ_comp_σ_succ'_assoc, δ_comp_δ_self'_assoc, δ_comp_σ_of_le, SSet.stdSimplex.faceSingletonIso_one_hom_comp_ι_eq_δ, δ_comp_δ_self, SSet.stdSimplex.faceSingletonComplIso_hom_ι, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_obj_d, δ_comp_σ_succ', SSet.PtSimplex.MulStruct.δ_map_of_lt, SSet.horn₂₁.isPushout, δ_comp_σ_succ, δ_comp_δ'', δ_comp_σ_of_gt'_assoc, δ_comp_σ_of_gt, δ_comp_δ'_assoc, SSet.PtSimplex.MulStruct.δ_castSucc_castSucc_map_assoc, δ_comp_σ_self, SSet.horn₂₀.isPushout, SSet.stdSimplex.ofSimplex_yonedaEquiv_δ, SSet.stdSimplex.faceSingletonComplIso_hom_ι_assoc, SSet.horn₂₂.isPushout, SSet.stdSimplex.faceSingletonIso_one_hom_comp_ι_eq_δ_assoc, SSet.PtSimplex.RelStruct.δ_succ_map, δ_naturality, SSet.horn.ι_ι_assoc, SSet.PtSimplex.RelStruct.δ_map_of_gt, SSet.horn.ι_ι, SSet.PtSimplex.MulStruct.δ_succ_castSucc_map_assoc, SimplexCategory.II_δ, δ_comp_σ_of_gt', δ_comp_σ_self'_assoc, SSet.PtSimplex.RelStruct.δ_succ_map_assoc, SSet.PtSimplex.MulStruct.δ_castSucc_castSucc_map, δ_comp_σ_of_le_assoc
σ 📖CompOp
19 mathmath: σ_naturality_assoc, SimplexCategory.II_σ, δ_comp_σ_self', δ_comp_σ_self_assoc, σ_naturality, δ_comp_σ_succ_assoc, δ_comp_σ_of_gt_assoc, δ_comp_σ_succ'_assoc, δ_comp_σ_of_le, δ_comp_σ_succ', δ_comp_σ_succ, σ_comp_σ, δ_comp_σ_of_gt'_assoc, δ_comp_σ_of_gt, σ_comp_σ_assoc, δ_comp_σ_self, δ_comp_σ_of_gt', δ_comp_σ_self'_assoc, δ_comp_σ_of_le_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
augment_hom_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.CosimplicialObject
instCategory
const
CategoryTheory.Functor.id
CategoryTheory.Comma.hom
augment
SimplexCategory.const
SimplexCategory.len
SimplexCategory.instOfNatToTypeOrderHomFinHAddNatLenOfNat
augment_hom_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.CosimplicialObject
instCategory
const
CategoryTheory.Comma.left
CategoryTheory.Functor.id
augment
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
SimplexCategory.const_eq_id
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
augment_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.map
CategoryTheory.Comma.left
CategoryTheory.CosimplicialObject
instCategory
const
CategoryTheory.Functor.id
augment
augment_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.map
CategoryTheory.Comma.right
CategoryTheory.CosimplicialObject
instCategory
const
CategoryTheory.Functor.id
augment
comp_app 📖mathematicalCategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.CosimplicialObject
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor.obj
comp_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.CosimplicialObject
instCategory
const
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.comp
Augmented
CategoryTheory.Category.toCategoryStruct
instCategoryAugmented
CategoryTheory.Comma.left
comp_right_app 📖mathematicalCategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Comma.right
CategoryTheory.CosimplicialObject
instCategory
const
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
CategoryTheory.CategoryStruct.comp
Augmented
CategoryTheory.Category.toCategoryStruct
instCategoryAugmented
CategoryTheory.Functor.obj
eqToIso_refl 📖mathematicaleqToIso
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.mapIso_refl
hom_ext 📖CategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.NatTrans.ext
hom_ext_iff 📖mathematicalCategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
hom_ext
id_app 📖mathematicalCategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.CosimplicialObject
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.Functor.obj
id_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.CosimplicialObject
instCategory
const
CategoryTheory.Functor.id
CategoryTheory.CategoryStruct.id
Augmented
CategoryTheory.Category.toCategoryStruct
instCategoryAugmented
CategoryTheory.Comma.left
id_right_app 📖mathematicalCategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Comma.right
CategoryTheory.CosimplicialObject
instCategory
const
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
CategoryTheory.CategoryStruct.id
Augmented
CategoryTheory.Category.toCategoryStruct
instCategoryAugmented
CategoryTheory.Functor.obj
instHasColimits 📖mathematicalCategoryTheory.Limits.HasColimits
CategoryTheory.CosimplicialObject
instCategory
instHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
instHasColimitsOfShape 📖mathematicalCategoryTheory.Limits.HasColimitsOfShape
CategoryTheory.CosimplicialObject
instCategory
CategoryTheory.Limits.functorCategoryHasColimitsOfShape
instHasLimits 📖mathematicalCategoryTheory.Limits.HasLimits
CategoryTheory.CosimplicialObject
instCategory
instHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
instHasLimitsOfShape 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.CosimplicialObject
instCategory
CategoryTheory.Limits.functorCategoryHasLimitsOfShape
whiskering_map_app_app 📖mathematicalCategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.map
CategoryTheory.CosimplicialObject
instCategory
whiskering
whiskering_obj_map_app 📖mathematicalCategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.CosimplicialObject
instCategory
whiskering
whiskering_obj_obj_map 📖mathematicalCategoryTheory.Functor.map
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.CosimplicialObject
instCategory
whiskering
whiskering_obj_obj_obj 📖mathematicalCategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.CosimplicialObject
instCategory
whiskering
δ_comp_δ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
CategoryTheory.Functor.map_comp
SimplexCategory.δ_comp_δ
δ_comp_δ' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
CategoryTheory.Functor.map_comp
SimplexCategory.δ_comp_δ'
δ_comp_δ'' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
Fin.le_iff_val_le_val
Fin.le_iff_val_le_val
CategoryTheory.Functor.map_comp
SimplexCategory.δ_comp_δ''
δ_comp_δ''_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
Fin.le_iff_val_le_val
Fin.le_iff_val_le_val
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_δ''
δ_comp_δ'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_δ'
δ_comp_δ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_δ
δ_comp_δ_self 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
CategoryTheory.Functor.map_comp
SimplexCategory.δ_comp_δ_self
δ_comp_δ_self' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
δ_comp_δ_self
δ_comp_δ_self'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_δ_self'
δ_comp_δ_self_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_δ_self
δ_comp_σ_of_gt 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
σ
CategoryTheory.Functor.map_comp
SimplexCategory.δ_comp_σ_of_gt
δ_comp_σ_of_gt' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
σ
add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instPartialOrder
covariant_swap_add_of_covariant_add
Preorder.toLE
PartialOrder.toPreorder
Nat.instAddCommSemigroup
IsOrderedAddMonoid.toAddLeftMono
Nat.instAddCommMonoid
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
Nat.instLinearOrder
lt_of_lt_of_le
Nat.instPreorder
add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
lt_of_lt_of_le
CategoryTheory.Functor.map_comp
SimplexCategory.δ_comp_σ_of_gt'
δ_comp_σ_of_gt'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
σ
add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instPartialOrder
covariant_swap_add_of_covariant_add
Preorder.toLE
PartialOrder.toPreorder
Nat.instAddCommSemigroup
IsOrderedAddMonoid.toAddLeftMono
Nat.instAddCommMonoid
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
Nat.instLinearOrder
lt_of_lt_of_le
Nat.instPreorder
add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
lt_of_lt_of_le
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_of_gt'
δ_comp_σ_of_gt_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
σ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_of_gt
δ_comp_σ_of_le 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
σ
CategoryTheory.Functor.map_comp
SimplexCategory.δ_comp_σ_of_le
δ_comp_σ_of_le_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
σ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_of_le
δ_comp_σ_self 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
σ
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map_comp
SimplexCategory.δ_comp_σ_self
CategoryTheory.Functor.map_id
δ_comp_σ_self' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
σ
CategoryTheory.CategoryStruct.id
δ_comp_σ_self
δ_comp_σ_self'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
σ
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_self'
δ_comp_σ_self_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
σ
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_self
δ_comp_σ_succ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
σ
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map_comp
SimplexCategory.δ_comp_σ_succ
CategoryTheory.Functor.map_id
δ_comp_σ_succ' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
σ
CategoryTheory.CategoryStruct.id
δ_comp_σ_succ
δ_comp_σ_succ'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
σ
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_succ'
δ_comp_σ_succ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
σ
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_succ
δ_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
CategoryTheory.NatTrans.app
CategoryTheory.NatTrans.naturality
δ_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
δ
CategoryTheory.NatTrans.app
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_naturality
σ_comp_σ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
σ
CategoryTheory.Functor.map_comp
SimplexCategory.σ_comp_σ
σ_comp_σ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
σ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
σ_comp_σ
σ_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
σ
CategoryTheory.NatTrans.app
CategoryTheory.NatTrans.naturality
σ_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
σ
CategoryTheory.NatTrans.app
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
σ_naturality

CategoryTheory.CosimplicialObject.Augmented

Definitions

NameCategoryTheorems
const 📖CompOp
5 mathmath: const_obj_right, const_map_right, const_map_left, const_obj_hom, const_obj_left
drop 📖CompOp
7 mathmath: drop_obj, toArrow_map_right, toArrow_map_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_hom_app_app, whiskering_map_app_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_inv_app_app, drop_map
leftOp 📖CompOp
14 mathmath: leftOpRightOpIso_hom_left, leftOp_right, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_inv_right, leftOpRightOpIso_inv_left, leftOp_left_map, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_inv_left_app, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_hom_left_app, CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_hom_right, leftOpRightOpIso_hom_right_app, CategoryTheory.cosimplicialToSimplicialAugmented_obj, leftOp_left_obj, leftOpRightOpIso_inv_right_app, leftOp_hom_app, CategoryTheory.cosimplicialToSimplicialAugmented_map
leftOpRightOpIso 📖CompOp
4 mathmath: leftOpRightOpIso_hom_left, leftOpRightOpIso_inv_left, leftOpRightOpIso_hom_right_app, leftOpRightOpIso_inv_right_app
point 📖CompOp
7 mathmath: AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompPointIso_hom_app, whiskering_map_app_left, toArrow_map_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompPointIso_inv_app, toArrow_map_left, point_map, point_obj
toArrow 📖CompOp
15 mathmath: CategoryTheory.CosimplicialObject.cechConerveEquiv_symm_apply, toArrow_map_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_right, toArrow_map_left, toArrow_obj_left, toArrow_obj_right, toArrow_obj_hom, CategoryTheory.CosimplicialObject.equivalenceRightToLeft_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_left, CategoryTheory.CosimplicialObject.equivalenceLeftToRight_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_left, CategoryTheory.CosimplicialObject.equivalenceRightToLeft_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_right, CategoryTheory.CosimplicialObject.equivalenceLeftToRight_right, CategoryTheory.CosimplicialObject.cechConerveEquiv_apply
whiskering 📖CompOp
3 mathmath: whiskering_map_app_left, whiskering_map_app_right, whiskering_obj
whiskeringObj 📖CompOp
3 mathmath: whiskering_map_app_left, whiskering_map_app_right, whiskering_obj

Theorems

NameKindAssumesProvesValidatesDepends On
const_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
const
const_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
const
const_obj_hom 📖mathematicalCategoryTheory.Comma.hom
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
const
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
const_obj_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
const
const_obj_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
const
drop_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
drop
CategoryTheory.CommaMorphism.right
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
drop_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
drop
CategoryTheory.Comma.right
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
hom_ext 📖CategoryTheory.CommaMorphism.left
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
CategoryTheory.Comma.hom_ext
hom_ext_iff 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
hom_ext
leftOpRightOpIso_hom_left 📖mathematicalCategoryTheory.CommaMorphism.left
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.Augmented.rightOp
leftOp
CategoryTheory.Iso.hom
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
leftOpRightOpIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
leftOpRightOpIso_hom_right_app 📖mathematicalCategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Comma.right
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.Augmented.rightOp
leftOp
CategoryTheory.CommaMorphism.right
CategoryTheory.Iso.hom
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
leftOpRightOpIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
leftOpRightOpIso_inv_left 📖mathematicalCategoryTheory.CommaMorphism.left
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.Augmented.rightOp
leftOp
CategoryTheory.Iso.inv
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
leftOpRightOpIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
leftOpRightOpIso_inv_right_app 📖mathematicalCategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Comma.right
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.Augmented.rightOp
leftOp
CategoryTheory.CommaMorphism.right
CategoryTheory.Iso.inv
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
leftOpRightOpIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
leftOp_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.leftOp
CategoryTheory.Functor.obj
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.CosimplicialObject.const
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.const
leftOp
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
leftOp_left_map 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Comma.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
leftOp
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
Opposite.unop
leftOp_left_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Comma.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
leftOp
Opposite.unop
CategoryTheory.Comma.right
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
leftOp_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
leftOp
Opposite.unop
CategoryTheory.Comma.left
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
point_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
point
CategoryTheory.CommaMorphism.left
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
point_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
point
CategoryTheory.Comma.left
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
toArrow_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
point
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
drop
CategoryTheory.NatTrans.app
CategoryTheory.CosimplicialObject.const
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
toArrow
toArrow_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
point
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
drop
CategoryTheory.NatTrans.app
CategoryTheory.CosimplicialObject.const
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
toArrow
toArrow_obj_hom 📖mathematicalCategoryTheory.Comma.hom
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
toArrow
CategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
CategoryTheory.Comma.left
CategoryTheory.Comma.right
toArrow_obj_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
toArrow
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
toArrow_obj_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
toArrow
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
whiskering_map_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
whiskeringObj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
whiskering
point
whiskering_map_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
whiskeringObj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
whiskering
CategoryTheory.Functor.whiskerLeft
SimplexCategory
SimplexCategory.smallCategory
drop
whiskering_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.CosimplicialObject.Augmented
CategoryTheory.CosimplicialObject.instCategoryAugmented
whiskering
whiskeringObj

CategoryTheory.CosimplicialObject.Truncated

Definitions

NameCategoryTheorems
mkNotation 📖CompOp
trunc 📖CompOp
whiskering 📖CompOp
4 mathmath: whiskering_obj_obj_obj, whiskering_map_app_app, whiskering_obj_map_app, whiskering_obj_obj_map

Theorems

NameKindAssumesProvesValidatesDepends On
instHasColimits 📖mathematicalCategoryTheory.Limits.HasColimits
CategoryTheory.CosimplicialObject.Truncated
CategoryTheory.CosimplicialObject.instCategoryTruncated
instHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
instHasColimitsOfShape 📖mathematicalCategoryTheory.Limits.HasColimitsOfShape
CategoryTheory.CosimplicialObject.Truncated
CategoryTheory.CosimplicialObject.instCategoryTruncated
CategoryTheory.Limits.functorCategoryHasColimitsOfShape
instHasLimits 📖mathematicalCategoryTheory.Limits.HasLimits
CategoryTheory.CosimplicialObject.Truncated
CategoryTheory.CosimplicialObject.instCategoryTruncated
instHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
instHasLimitsOfShape 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.CosimplicialObject.Truncated
CategoryTheory.CosimplicialObject.instCategoryTruncated
CategoryTheory.Limits.functorCategoryHasLimitsOfShape
whiskering_map_app_app 📖mathematicalCategoryTheory.NatTrans.app
SimplexCategory.Truncated
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.map
CategoryTheory.CosimplicialObject.Truncated
CategoryTheory.CosimplicialObject.instCategoryTruncated
whiskering
whiskering_obj_map_app 📖mathematicalCategoryTheory.NatTrans.app
SimplexCategory.Truncated
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.CosimplicialObject.Truncated
CategoryTheory.CosimplicialObject.instCategoryTruncated
whiskering
whiskering_obj_obj_map 📖mathematicalCategoryTheory.Functor.map
SimplexCategory.Truncated
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.CosimplicialObject.Truncated
CategoryTheory.CosimplicialObject.instCategoryTruncated
whiskering
whiskering_obj_obj_obj 📖mathematicalCategoryTheory.Functor.obj
SimplexCategory.Truncated
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.CosimplicialObject.Truncated
CategoryTheory.CosimplicialObject.instCategoryTruncated
whiskering

CategoryTheory.SimplicialObject

Definitions

NameCategoryTheorems
augment 📖CompOp
4 mathmath: augment_left, augment_right, augment_hom_zero, augment_hom_app
const 📖CompOp
81 mathmath: id_left_app, CategoryTheory.Arrow.augmentedCechNerve_hom_app, comp_right, Augmented.point_map, CategoryTheory.CosimplicialObject.Augmented.leftOp_right, Augmented.toArrow_map_right, augment_left, Augmented.ExtraDegeneracy.s_comp_δ₀_assoc, CategoryTheory.Arrow.mapAugmentedCechNerve_left, Augmented.w₀, Augmented.toArrow_map_left, Augmented.ExtraDegeneracy.s'_comp_ε, Augmented.rightOpLeftOpIso_inv_right, Augmented.ExtraDegeneracy.s_comp_δ, Augmented.const_obj_hom, Augmented.whiskering_map_app_right, CategoryTheory.simplicialToCosimplicialAugmented_map_left, SSet.Augmented.stdSimplex_map_right, Augmented.const_map_left, SSet.Augmented.stdSimplex_obj_left, Augmented.const_obj_right, CategoryTheory.CosimplicialObject.Augmented.leftOp_left_map, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_zero, Augmented.ExtraDegeneracy.s₀_comp_δ₁_assoc, augment_right, augment_hom_zero, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, Augmented.rightOp_right_map, Augmented.hom_ext_iff, Augmented.rightOpLeftOpIso_inv_left_app, augment_hom_app, Augmented.rightOpLeftOpIso_hom_left_app, SSet.Augmented.stdSimplex_obj_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, Augmented.const_map_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, comp_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, Augmented.rightOp_right_obj, Augmented.rightOpLeftOpIso_hom_right, CategoryTheory.Arrow.augmentedCechNerve_left, Augmented.whiskering_map_app_left, Augmented.ExtraDegeneracy.s_comp_σ, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, Augmented.drop_obj, equivalenceRightToLeft_right, Augmented.ExtraDegeneracy.s₀_comp_δ₁, Augmented.ExtraDegeneracy.s_comp_δ_assoc, CategoryTheory.Arrow.augmentedCechNerve_right, Augmented.w₀_assoc, Augmented.ExtraDegeneracy.s_comp_σ_assoc, Augmented.const_obj_left, SSet.Augmented.stdSimplex_obj_hom_app, Augmented.ExtraDegeneracy.s'_comp_ε_assoc, equivalenceRightToLeft_left, Augmented.ExtraDegeneracy.s_comp_δ₀, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, Augmented.rightOp_hom_app, Augmented.point_obj, CategoryTheory.CosimplicialObject.Augmented.leftOp_left_obj, Augmented.rightOp_left, SSet.Augmented.stdSimplex_map_left, Augmented.toArrow_obj_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_right, id_right, CategoryTheory.simplicialToCosimplicialAugmented_map_right, CategoryTheory.CosimplicialObject.Augmented.leftOp_hom_app, CategoryTheory.cosimplicialToSimplicialAugmented_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, Augmented.drop_map, augmentedCechNerve_obj_right, augmentedCechNerve_map_left_app, augmentedCechNerve_obj_left_map, augmentedCechNerve_obj_left_obj, equivalenceLeftToRight_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_obj, augmentedCechNerve_obj_hom_app, augmentedCechNerve_map_right, CategoryTheory.Arrow.mapAugmentedCechNerve_right, equivalenceLeftToRight_right
cosk 📖CompOp
2 mathmath: instIsRightKanExtensionOppositeTruncatedSimplexCategoryObjCoskAppTruncatedCounitCoskAdjTruncation, isoCoskOfIsCoskeletal_hom
coskAdj 📖CompOp
5 mathmath: instIsRightKanExtensionOppositeTruncatedSimplexCategoryObjCoskAppTruncatedCounitCoskAdjTruncation, isoCoskOfIsCoskeletal_hom, instIsIsoAppUnitTruncatedCoskAdj, Truncated.cosk_reflective, isCoskeletal_iff_isIso
diagonal 📖CompOp
eqToIso 📖CompOp
1 mathmath: eqToIso_refl
instCategoryAugmented 📖CompOp
89 mathmath: id_left_app, comp_right, Augmented.point_map, Augmented.toArrow_map_right, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_succ, Augmented.ExtraDegeneracy.s_comp_δ₀_assoc, Augmented.w₀, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, Augmented.toArrow_map_left, Augmented.ExtraDegeneracy.s'_comp_ε, Augmented.toArrow_obj_left, Augmented.ExtraDegeneracy.const_s', Augmented.rightOpLeftOpIso_inv_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, Augmented.toArrow_obj_right, Augmented.ExtraDegeneracy.s_comp_δ, Augmented.const_obj_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompPointIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompPointIso_hom_app, Augmented.whiskering_map_app_right, CategoryTheory.simplicialToCosimplicialAugmented_map_left, Augmented.whiskering_obj, SSet.Augmented.stdSimplex_map_right, Augmented.const_map_left, SSet.Augmented.stdSimplex_obj_left, Augmented.const_obj_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_obj, SSet.Augmented.StandardSimplex.nonempty_extraDegeneracy_stdSimplex, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_zero, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_right, Augmented.ExtraDegeneracy.s₀_comp_δ₁_assoc, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, Augmented.rightOpLeftOpIso_inv_left_app, Augmented.rightOpLeftOpIso_hom_left_app, SSet.Augmented.stdSimplex_obj_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, Augmented.const_map_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, comp_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, Augmented.rightOpLeftOpIso_hom_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, Augmented.whiskering_map_app_left, Augmented.ExtraDegeneracy.s_comp_σ, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, CategoryTheory.cosimplicialToSimplicialAugmented_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, Augmented.drop_obj, equivalenceRightToLeft_right, Augmented.ExtraDegeneracy.s₀_comp_δ₁, Augmented.ExtraDegeneracy.s_comp_δ_assoc, Augmented.w₀_assoc, Augmented.ExtraDegeneracy.s_comp_σ_assoc, cechNerveEquiv_symm_apply, Augmented.const_obj_left, SSet.Augmented.stdSimplex_obj_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_right, Augmented.ExtraDegeneracy.s'_comp_ε_assoc, equivalenceRightToLeft_left, Augmented.ExtraDegeneracy.s_comp_δ₀, Augmented.ExtraDegeneracy.const_s, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, CategoryTheory.simplicialToCosimplicialAugmented_obj, Augmented.point_obj, SSet.Augmented.stdSimplex_map_left, Augmented.toArrow_obj_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, cechNerveEquiv_apply, id_right, CategoryTheory.simplicialToCosimplicialAugmented_map_right, CategoryTheory.simplicialCosimplicialAugmentedEquiv_inverse, CategoryTheory.simplicialCosimplicialAugmentedEquiv_functor, CategoryTheory.cosimplicialToSimplicialAugmented_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, Augmented.drop_map, augmentedCechNerve_obj_right, augmentedCechNerve_map_left_app, augmentedCechNerve_obj_left_map, augmentedCechNerve_obj_left_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, equivalenceLeftToRight_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_obj, augmentedCechNerve_obj_hom_app, augmentedCechNerve_map_right, equivalenceLeftToRight_right
instCategoryTruncated 📖CompOp
22 mathmath: Truncated.instHasLimits, Truncated.whiskering_obj_obj_obj, Truncated.whiskering_map_app_app, Truncated.cosk.full, instIsRightKanExtensionOppositeTruncatedSimplexCategoryObjCoskAppTruncatedCounitCoskAdjTruncation, Truncated.instHasColimits, Truncated.cosk.faithful, Truncated.trunc_obj_obj, isoCoskOfIsCoskeletal_hom, Truncated.sk.full, instIsIsoAppUnitTruncatedCoskAdj, Truncated.trunc_obj_map, Truncated.trunc_map_app, Truncated.instHasLimitsOfShape, Truncated.whiskering_obj_obj_map, Truncated.cosk_reflective, Truncated.sk_coreflective, Truncated.sk.faithful, instIsLeftKanExtensionOppositeTruncatedSimplexCategoryObjSkAppTruncatedUnitSkAdjTruncation, isCoskeletal_iff_isIso, Truncated.instHasColimitsOfShape, Truncated.whiskering_obj_map_app
sk 📖CompOp
1 mathmath: instIsLeftKanExtensionOppositeTruncatedSimplexCategoryObjSkAppTruncatedUnitSkAdjTruncation
skAdj 📖CompOp
2 mathmath: Truncated.sk_coreflective, instIsLeftKanExtensionOppositeTruncatedSimplexCategoryObjSkAppTruncatedUnitSkAdjTruncation
truncation 📖CompOp
7 mathmath: instIsRightKanExtensionOppositeTruncatedSimplexCategoryObjCoskAppTruncatedCounitCoskAdjTruncation, isoCoskOfIsCoskeletal_hom, instIsIsoAppUnitTruncatedCoskAdj, Truncated.cosk_reflective, Truncated.sk_coreflective, instIsLeftKanExtensionOppositeTruncatedSimplexCategoryObjSkAppTruncatedUnitSkAdjTruncation, isCoskeletal_iff_isIso
truncationCompTrunc 📖CompOp
whiskering 📖CompOp
10 mathmath: whiskering_obj_map_app, AlgebraicTopology.DoldKan.map_Hσ, AlgebraicTopology.DoldKan.map_PInfty_f, whiskering_map_app_app, AlgebraicTopology.DoldKan.map_P, AlgebraicTopology.map_alternatingFaceMapComplex, whiskering_obj_obj_obj, whiskering_obj_obj_map, AlgebraicTopology.DoldKan.map_Q, AlgebraicTopology.DoldKan.map_hσ'
δ 📖CompOp
87 mathmath: SSet.δ_comp_σ_self'_apply, SSet.op_δ, δ_comp_δ_self_assoc, δ_comp_δ''_assoc, AlgebraicTopology.NormalizedMooreComplex.obj_d, δ_comp_σ_of_gt, SSet.Edge.CompStruct.d₀, SSet.Edge.tgt_eq, SSet.StrictSegal.spine_δ_arrow_eq, CategoryTheory.nerve.δ₂_zero, SSet.δ_comp_σ_succ'_apply, Augmented.ExtraDegeneracy.s_comp_δ₀_assoc, SSet.Subcomplex.PairingCore.surjective', δ_comp_σ_succ'_assoc, δ_def, δ_comp_δ_assoc, SSet.δ_naturality_apply, SSet.prodStdSimplex.objEquiv_δ_apply, Augmented.ExtraDegeneracy.s_comp_δ, SSet.StrictSegal.spine_δ_arrow_lt, SSet.δ_comp_σ_of_gt_apply, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_δ_eq_zero_assoc, SSet.spine_δ₀, δ_comp_σ_self'_assoc, δ_naturality, SSet.δ_comp_σ_succ_apply, Augmented.ExtraDegeneracy.s₀_comp_δ₁_assoc, SSet.Edge.mk'_edge, δ_comp_σ_of_gt'_assoc, δ_comp_δ'_assoc, δ_comp_σ_self', AlgebraicTopology.DoldKan.HigherFacesVanish.comp_δ_eq_zero, SSet.Path.arrow_tgt, δ_comp_δ', δ_comp_σ_succ', AlgebraicTopology.AlternatingFaceMapComplex.obj_d_eq, SimplicialObject.opFunctor_obj_δ, δ_comp_δ'', δ_comp_δ_self, CategoryTheory.nerve.δ₁_mk₂_eq, SSet.Subcomplex.PairingCore.type₂_simplex, SSet.Edge.CompStruct.d₂, Augmented.ExtraDegeneracy.s₀_comp_δ₁, δ_comp_σ_of_le, δ_comp_σ_self, SSet.δ_comp_σ_self_apply, δ_comp_σ_of_gt_assoc, SSet.Edge.CompStruct.d₁, Augmented.ExtraDegeneracy.s_comp_δ_assoc, SSet.Subcomplex.PairingCore.nonDegenerate₂, δ_naturality_assoc, CategoryTheory.nerve.δ_obj, δ_comp_σ_succ, CategoryTheory.nerve.δ₂_mk₂_eq, SSet.δ_comp_σ_of_le_apply, SSet.Path.arrow_src, Augmented.ExtraDegeneracy.s_comp_δ₀, δ_comp_σ_of_gt', SSet.StrictSegal.spine_δ_arrow_gt, δ_comp_σ_self_assoc, AlgebraicTopology.NormalizedMooreComplex.objX_add_one, δ_comp_δ_self', AlgebraicTopology.DoldKan.N₂_obj_X_d, SSet.δ_comp_δ''_apply, SSet.δ_comp_δ'_apply, SSet.δ_comp_σ_of_gt'_apply, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_Hσ_eq, SSet.StrictSegalCore.δ₀_spineToSimplex, SSet.S.IsUniquelyCodimOneFace.δ_eq_iff, δ_comp_σ_of_le_assoc, δ_comp_δ, AlgebraicTopology.DoldKan.decomposition_Q, SSet.S.IsUniquelyCodimOneFace.existsUnique_δ_cast_simplex, SSet.Subcomplex.PairingCore.notMem₂, SSet.δ_comp_δ_apply, SSet.StrictSegal.spine_δ_vertex_lt, CategoryTheory.nerve.δ₀_eq, CategoryTheory.nerve.δ₀_mk₂_eq, SSet.S.IsUniquelyCodimOneFace.iff, δ_comp_σ_succ_assoc, SSet.S.IsUniquelyCodimOneFace.δ_index, SSet.StrictSegal.spine_δ_vertex_ge, SSet.δ_comp_δ_self_apply, CategoryTheory.nerve.δ₂_two, SSet.δ_comp_δ_self'_apply, δ_comp_δ_self'_assoc, SSet.Edge.src_eq
σ 📖CompOp
52 mathmath: SSet.δ_comp_σ_self'_apply, CategoryTheory.nerve.σ_obj, AlgebraicTopology.DoldKan.σ_comp_PInfty_assoc, δ_comp_σ_of_gt, σ_naturality_assoc, SSet.σ_mem_degenerate, SimplicialObject.opFunctor_obj_σ, SSet.δ_comp_σ_succ'_apply, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_σ, σ_naturality, δ_comp_σ_succ'_assoc, SSet.op_σ, SSet.δ_comp_σ_of_gt_apply, δ_comp_σ_self'_assoc, σ_def, SSet.δ_comp_σ_succ_apply, δ_comp_σ_of_gt'_assoc, δ_comp_σ_self', PartialOrder.mem_range_nerve_σ_iff, SSet.Edge.CompStruct.idComp_simplex, δ_comp_σ_succ', σ_comp_σ, Augmented.ExtraDegeneracy.s_comp_σ, δ_comp_σ_of_le, CategoryTheory.nerve.σ₀_mk₀_eq, SimplicialObject.Splitting.σ_comp_πSummand_id_eq_zero_assoc, δ_comp_σ_self, SSet.δ_comp_σ_self_apply, δ_comp_σ_of_gt_assoc, Augmented.ExtraDegeneracy.s_comp_σ_assoc, δ_comp_σ_succ, SSet.δ_comp_σ_of_le_apply, AlgebraicTopology.DoldKan.hσ'_eq, CategoryTheory.nerve.σ_zero_nerveEquiv_symm, δ_comp_σ_of_gt', AlgebraicTopology.DoldKan.σ_comp_PInfty, δ_comp_σ_self_assoc, SSet.σ_comp_σ_apply, SSet.Edge.CompStruct.compId_simplex, σ_comp_σ_assoc, SSet.δ_comp_σ_of_gt'_apply, SSet.degenerate_eq_iUnion_range_σ, SimplicialObject.Splitting.σ_comp_πSummand_id_eq_zero, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_Hσ_eq, δ_comp_σ_of_le_assoc, SSet.σ_naturality_apply, AlgebraicTopology.DoldKan.decomposition_Q, AlgebraicTopology.DoldKan.σ_comp_P_eq_zero, AlgebraicTopology.DoldKan.MorphComponents.id_b, δ_comp_σ_succ_assoc, AlgebraicTopology.DoldKan.hσ'_eq', SSet.Edge.id_edge

Theorems

NameKindAssumesProvesValidatesDepends On
augment_hom_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.NatTrans.app
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
const
CategoryTheory.Comma.hom
augment
Opposite.unop
SimplexCategory.const
SimplexCategory.len
SimplexCategory.instOfNatToTypeOrderHomFinHAddNatLenOfNat
augment_hom_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.NatTrans.app
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.Comma.left
const
augment
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
SimplexCategory.const_eq_id
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
augment_left 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Comma.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
const
augment
augment_right 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Comma.right
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
const
augment
comp_left_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Comma.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
const
CategoryTheory.CommaMorphism.left
CategoryTheory.CategoryStruct.comp
Augmented
CategoryTheory.Category.toCategoryStruct
instCategoryAugmented
CategoryTheory.Functor.obj
comp_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
const
CategoryTheory.CategoryStruct.comp
Augmented
CategoryTheory.Category.toCategoryStruct
instCategoryAugmented
CategoryTheory.Comma.right
eqToIso_refl 📖mathematicaleqToIso
CategoryTheory.Iso.refl
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.Functor.mapIso_refl
hom_ext 📖CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.NatTrans.ext
hom_ext_iff 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
hom_ext
id_left_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Comma.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
const
CategoryTheory.CommaMorphism.left
CategoryTheory.CategoryStruct.id
Augmented
CategoryTheory.Category.toCategoryStruct
instCategoryAugmented
CategoryTheory.Functor.obj
id_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
const
CategoryTheory.CategoryStruct.id
Augmented
CategoryTheory.Category.toCategoryStruct
instCategoryAugmented
CategoryTheory.Comma.right
instHasColimits 📖mathematicalCategoryTheory.Limits.HasColimits
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
instHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
instHasColimitsOfShape 📖mathematicalCategoryTheory.Limits.HasColimitsOfShape
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Limits.functorCategoryHasColimitsOfShape
instHasLimits 📖mathematicalCategoryTheory.Limits.HasLimits
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
instHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
instHasLimitsOfShape 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Limits.functorCategoryHasLimitsOfShape
instIsLeftKanExtensionOppositeTruncatedSimplexCategoryObjSkAppTruncatedUnitSkAdjTruncation 📖mathematicalCategoryTheory.Functor.HasLeftKanExtension
Opposite
SimplexCategory.Truncated
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.Functor.IsLeftKanExtension
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
sk
Truncated
instCategoryTruncated
CategoryTheory.Functor.id
truncation
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
Truncated.sk
CategoryTheory.Adjunction.unit
skAdj
CategoryTheory.Functor.lanAdjunction_unit
CategoryTheory.Functor.instIsLeftKanExtensionObjLanAppLanUnit
instIsRightKanExtensionOppositeTruncatedSimplexCategoryObjCoskAppTruncatedCounitCoskAdjTruncation 📖mathematicalCategoryTheory.Functor.HasRightKanExtension
Opposite
SimplexCategory.Truncated
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.Functor.IsRightKanExtension
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
cosk
Truncated
instCategoryTruncated
CategoryTheory.Functor.id
truncation
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
Truncated.cosk
CategoryTheory.Adjunction.counit
coskAdj
CategoryTheory.Functor.ranAdjunction_counit
CategoryTheory.Functor.instIsRightKanExtensionObjRanAppRanCounit
whiskering_map_app_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.map
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
whiskering
whiskering_obj_map_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
whiskering
whiskering_obj_obj_map 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
whiskering
whiskering_obj_obj_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
whiskering
δ_comp_δ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
δ
CategoryTheory.Functor.map_comp
SimplexCategory.δ_comp_δ
δ_comp_δ' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
δ
CategoryTheory.Functor.map_comp
SimplexCategory.δ_comp_δ'
δ_comp_δ'' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
δ
Fin.le_iff_val_le_val
Fin.le_iff_val_le_val
CategoryTheory.Functor.map_comp
SimplexCategory.δ_comp_δ''
δ_comp_δ''_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
δ
Fin.le_iff_val_le_val
Fin.le_iff_val_le_val
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_δ''
δ_comp_δ'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
δ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_δ'
δ_comp_δ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
δ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_δ
δ_comp_δ_self 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
δ
CategoryTheory.Functor.map_comp
SimplexCategory.δ_comp_δ_self
δ_comp_δ_self' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
δ
δ_comp_δ_self
δ_comp_δ_self'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
δ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_δ_self'
δ_comp_δ_self_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
δ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_δ_self
δ_comp_σ_of_gt 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
σ
δ
CategoryTheory.Functor.map_comp
SimplexCategory.δ_comp_σ_of_gt
δ_comp_σ_of_gt' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
σ
δ
add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instPartialOrder
covariant_swap_add_of_covariant_add
Preorder.toLE
PartialOrder.toPreorder
Nat.instAddCommSemigroup
IsOrderedAddMonoid.toAddLeftMono
Nat.instAddCommMonoid
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
Nat.instLinearOrder
lt_of_lt_of_le
Nat.instPreorder
add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
lt_of_lt_of_le
CategoryTheory.Functor.map_comp
SimplexCategory.δ_comp_σ_of_gt'
δ_comp_σ_of_gt'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
σ
δ
add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instPartialOrder
covariant_swap_add_of_covariant_add
Preorder.toLE
PartialOrder.toPreorder
Nat.instAddCommSemigroup
IsOrderedAddMonoid.toAddLeftMono
Nat.instAddCommMonoid
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
Nat.instLinearOrder
lt_of_lt_of_le
Nat.instPreorder
add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
lt_of_lt_of_le
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_of_gt'
δ_comp_σ_of_gt_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
σ
δ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_of_gt
δ_comp_σ_of_le 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
σ
δ
CategoryTheory.Functor.map_comp
SimplexCategory.δ_comp_σ_of_le
δ_comp_σ_of_le_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
σ
δ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_of_le
δ_comp_σ_self 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
σ
δ
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map_comp
SimplexCategory.δ_comp_σ_self
CategoryTheory.Functor.map_id
δ_comp_σ_self' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
σ
δ
CategoryTheory.CategoryStruct.id
δ_comp_σ_self
δ_comp_σ_self'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
σ
δ
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_self'
δ_comp_σ_self_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
σ
δ
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_self
δ_comp_σ_succ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
σ
δ
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.map_comp
SimplexCategory.δ_comp_σ_succ
CategoryTheory.Functor.map_id
δ_comp_σ_succ' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
σ
δ
CategoryTheory.CategoryStruct.id
δ_comp_σ_succ
δ_comp_σ_succ'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
σ
δ
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_succ'
δ_comp_σ_succ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
σ
δ
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp_σ_succ
δ_def 📖mathematicalδ
CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.δ
δ_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
δ
CategoryTheory.NatTrans.app
CategoryTheory.NatTrans.naturality
δ_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
δ
CategoryTheory.NatTrans.app
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_naturality
σ_comp_σ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
σ
CategoryTheory.Functor.map_comp
SimplexCategory.σ_comp_σ
σ_comp_σ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
σ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
σ_comp_σ
σ_def 📖mathematicalσ
CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.σ
σ_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
σ
CategoryTheory.NatTrans.app
CategoryTheory.NatTrans.naturality
σ_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
σ
CategoryTheory.NatTrans.app
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
σ_naturality

CategoryTheory.SimplicialObject.Augmented

Definitions

NameCategoryTheorems
const 📖CompOp
7 mathmath: ExtraDegeneracy.const_s', const_obj_hom, const_map_left, const_obj_right, const_map_right, const_obj_left, ExtraDegeneracy.const_s
drop 📖CompOp
23 mathmath: toArrow_map_right, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_succ, ExtraDegeneracy.s_comp_δ₀_assoc, w₀, toArrow_map_left, ExtraDegeneracy.s'_comp_ε, toArrow_obj_left, ExtraDegeneracy.s_comp_δ, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_zero, ExtraDegeneracy.s₀_comp_δ₁_assoc, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, whiskering_map_app_left, ExtraDegeneracy.s_comp_σ, drop_obj, ExtraDegeneracy.s₀_comp_δ₁, ExtraDegeneracy.s_comp_δ_assoc, w₀_assoc, ExtraDegeneracy.s_comp_σ_assoc, ExtraDegeneracy.s'_comp_ε_assoc, ExtraDegeneracy.s_comp_δ₀, ExtraDegeneracy.const_s, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, drop_map
point 📖CompOp
15 mathmath: point_map, toArrow_map_right, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_succ, w₀, toArrow_map_left, ExtraDegeneracy.s'_comp_ε, ExtraDegeneracy.const_s', toArrow_obj_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompPointIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompPointIso_hom_app, whiskering_map_app_right, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_zero, w₀_assoc, ExtraDegeneracy.s'_comp_ε_assoc, point_obj
rightOp 📖CompOp
15 mathmath: CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_hom_left, rightOpLeftOpIso_inv_right, CategoryTheory.simplicialToCosimplicialAugmented_map_left, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_inv_left, rightOp_right_map, rightOpLeftOpIso_inv_left_app, rightOpLeftOpIso_hom_left_app, rightOp_right_obj, rightOpLeftOpIso_hom_right, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_hom_right_app, CategoryTheory.simplicialToCosimplicialAugmented_obj, rightOp_hom_app, rightOp_left, CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_inv_right_app, CategoryTheory.simplicialToCosimplicialAugmented_map_right
rightOpLeftOpIso 📖CompOp
4 mathmath: rightOpLeftOpIso_inv_right, rightOpLeftOpIso_inv_left_app, rightOpLeftOpIso_hom_left_app, rightOpLeftOpIso_hom_right
toArrow 📖CompOp
15 mathmath: toArrow_map_right, toArrow_map_left, toArrow_obj_left, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, toArrow_obj_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, CategoryTheory.SimplicialObject.equivalenceRightToLeft_right, CategoryTheory.SimplicialObject.cechNerveEquiv_symm_apply, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_right, CategoryTheory.SimplicialObject.equivalenceRightToLeft_left, toArrow_obj_hom, CategoryTheory.SimplicialObject.cechNerveEquiv_apply, CategoryTheory.SimplicialObject.equivalenceLeftToRight_left_app, CategoryTheory.SimplicialObject.equivalenceLeftToRight_right
whiskering 📖CompOp
3 mathmath: whiskering_map_app_right, whiskering_obj, whiskering_map_app_left
whiskeringObj 📖CompOp
3 mathmath: whiskering_map_app_right, whiskering_obj, whiskering_map_app_left

Theorems

NameKindAssumesProvesValidatesDepends On
const_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
const
const_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
const
const_obj_hom 📖mathematicalCategoryTheory.Comma.hom
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
const
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
const_obj_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
const
const_obj_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
const
drop_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
drop
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
drop_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
drop
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
hom_ext 📖CategoryTheory.CommaMorphism.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.CommaMorphism.right
CategoryTheory.Comma.hom_ext
hom_ext_iff 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.CommaMorphism.right
hom_ext
point_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
point
CategoryTheory.CommaMorphism.right
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
point_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
point
CategoryTheory.Comma.right
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
rightOpLeftOpIso_hom_left_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Comma.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.CosimplicialObject.Augmented.leftOp
rightOp
CategoryTheory.CommaMorphism.left
CategoryTheory.Iso.hom
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
rightOpLeftOpIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
rightOpLeftOpIso_hom_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.CosimplicialObject.Augmented.leftOp
rightOp
CategoryTheory.Iso.hom
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
rightOpLeftOpIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
rightOpLeftOpIso_inv_left_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Comma.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.CosimplicialObject.Augmented.leftOp
rightOp
CategoryTheory.CommaMorphism.left
CategoryTheory.Iso.inv
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
rightOpLeftOpIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
rightOpLeftOpIso_inv_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.CosimplicialObject.Augmented.leftOp
rightOp
CategoryTheory.Iso.inv
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
rightOpLeftOpIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
rightOp_hom_app 📖mathematicalCategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.rightOp
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.const
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
rightOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.op
rightOp_left 📖mathematicalCategoryTheory.Comma.left
Opposite
CategoryTheory.Category.opposite
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
rightOp
Opposite.op
CategoryTheory.Comma.right
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.const
rightOp_right_map 📖mathematicalCategoryTheory.Functor.map
SimplexCategory
SimplexCategory.smallCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Comma.right
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
rightOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.const
Opposite.op
rightOp_right_obj 📖mathematicalCategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Comma.right
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
CategoryTheory.Functor.id
rightOp
Opposite.op
CategoryTheory.Comma.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.const
toArrow_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
drop
Opposite.op
point
CategoryTheory.NatTrans.app
CategoryTheory.Comma.left
CategoryTheory.SimplicialObject.const
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
toArrow
toArrow_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
drop
Opposite.op
point
CategoryTheory.NatTrans.app
CategoryTheory.Comma.left
CategoryTheory.SimplicialObject.const
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
toArrow
toArrow_obj_hom 📖mathematicalCategoryTheory.Comma.hom
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
toArrow
CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Comma.left
CategoryTheory.SimplicialObject.const
CategoryTheory.Comma.right
Opposite.op
toArrow_obj_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
toArrow
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
drop
Opposite.op
toArrow_obj_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
toArrow
point
whiskering_map_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
whiskeringObj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
whiskering
CategoryTheory.Functor.whiskerLeft
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
drop
whiskering_map_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.SimplicialObject.const
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
whiskeringObj
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
whiskering
point
whiskering_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
whiskering
whiskeringObj
w₀ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
drop
Opposite.op
CategoryTheory.SimplicialObject.const
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
point
CategoryTheory.congr_app
CategoryTheory.CommaMorphism.w
w₀_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
drop
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.Functor.map
CategoryTheory.SimplicialObject.const
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
point
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w₀

CategoryTheory.SimplicialObject.Truncated

Definitions

NameCategoryTheorems
cosk 📖CompOp
7 mathmath: cosk.full, CategoryTheory.SimplicialObject.instIsRightKanExtensionOppositeTruncatedSimplexCategoryObjCoskAppTruncatedCounitCoskAdjTruncation, cosk.faithful, CategoryTheory.SimplicialObject.isoCoskOfIsCoskeletal_hom, CategoryTheory.SimplicialObject.instIsIsoAppUnitTruncatedCoskAdj, cosk_reflective, CategoryTheory.SimplicialObject.isCoskeletal_iff_isIso
mkNotation 📖CompOp
sk 📖CompOp
4 mathmath: sk.full, sk_coreflective, sk.faithful, CategoryTheory.SimplicialObject.instIsLeftKanExtensionOppositeTruncatedSimplexCategoryObjSkAppTruncatedUnitSkAdjTruncation
trunc 📖CompOp
3 mathmath: trunc_obj_obj, trunc_obj_map, trunc_map_app
whiskering 📖CompOp
4 mathmath: whiskering_obj_obj_obj, whiskering_map_app_app, whiskering_obj_obj_map, whiskering_obj_map_app

Theorems

NameKindAssumesProvesValidatesDepends On
cosk_reflective 📖mathematicalCategoryTheory.Functor.HasRightKanExtension
Opposite
SimplexCategory.Truncated
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.Functor.HasPointwiseRightKanExtension
CategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.SimplicialObject.Truncated
CategoryTheory.SimplicialObject.instCategoryTruncated
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
cosk
CategoryTheory.SimplicialObject.truncation
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
CategoryTheory.SimplicialObject.coskAdj
CategoryTheory.Functor.reflective'
CategoryTheory.Functor.instFullOppositeOp
CategoryTheory.ObjectProperty.full_ι
CategoryTheory.Functor.instFaithfulOppositeOp
CategoryTheory.ObjectProperty.faithful_ι
instHasColimits 📖mathematicalCategoryTheory.Limits.HasColimits
CategoryTheory.SimplicialObject.Truncated
CategoryTheory.SimplicialObject.instCategoryTruncated
instHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
instHasColimitsOfShape 📖mathematicalCategoryTheory.Limits.HasColimitsOfShape
CategoryTheory.SimplicialObject.Truncated
CategoryTheory.SimplicialObject.instCategoryTruncated
CategoryTheory.Limits.functorCategoryHasColimitsOfShape
instHasLimits 📖mathematicalCategoryTheory.Limits.HasLimits
CategoryTheory.SimplicialObject.Truncated
CategoryTheory.SimplicialObject.instCategoryTruncated
instHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
instHasLimitsOfShape 📖mathematicalCategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.SimplicialObject.Truncated
CategoryTheory.SimplicialObject.instCategoryTruncated
CategoryTheory.Limits.functorCategoryHasLimitsOfShape
sk_coreflective 📖mathematicalCategoryTheory.Functor.HasLeftKanExtension
Opposite
SimplexCategory.Truncated
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.SimplicialObject.Truncated
CategoryTheory.SimplicialObject.instCategoryTruncated
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
sk
CategoryTheory.SimplicialObject.truncation
CategoryTheory.Adjunction.unit
CategoryTheory.SimplicialObject.skAdj
CategoryTheory.Functor.coreflective'
CategoryTheory.Functor.instFullOppositeOp
CategoryTheory.ObjectProperty.full_ι
CategoryTheory.Functor.instFaithfulOppositeOp
CategoryTheory.ObjectProperty.faithful_ι
trunc_map_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
SimplexCategory.Truncated.incl
CategoryTheory.Functor.map
CategoryTheory.SimplicialObject.Truncated
CategoryTheory.SimplicialObject.instCategoryTruncated
trunc
Opposite.op
CategoryTheory.Functor.obj
Opposite.unop
trunc_obj_map 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Truncated
CategoryTheory.SimplicialObject.instCategoryTruncated
trunc
Opposite.op
SimplexCategory.Truncated.incl
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom.unop
trunc_obj_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.SimplicialObject.Truncated
CategoryTheory.SimplicialObject.instCategoryTruncated
trunc
Opposite.op
SimplexCategory.Truncated.incl
Opposite.unop
whiskering_map_app_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerRight
CategoryTheory.Functor.map
CategoryTheory.SimplicialObject.Truncated
CategoryTheory.SimplicialObject.instCategoryTruncated
whiskering
whiskering_obj_map_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.comp
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Truncated
CategoryTheory.SimplicialObject.instCategoryTruncated
whiskering
whiskering_obj_obj_map 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.SimplicialObject.Truncated
CategoryTheory.SimplicialObject.instCategoryTruncated
whiskering
whiskering_obj_obj_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.SimplicialObject.Truncated
CategoryTheory.SimplicialObject.instCategoryTruncated
whiskering

CategoryTheory.SimplicialObject.Truncated.cosk

Definitions

NameCategoryTheorems
fullyFaithful 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
faithful 📖mathematicalCategoryTheory.Functor.HasRightKanExtension
Opposite
SimplexCategory.Truncated
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.Functor.HasPointwiseRightKanExtension
CategoryTheory.Functor.Faithful
CategoryTheory.SimplicialObject.Truncated
CategoryTheory.SimplicialObject.instCategoryTruncated
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.Truncated.cosk
CategoryTheory.Functor.FullyFaithful.faithful
full 📖mathematicalCategoryTheory.Functor.HasRightKanExtension
Opposite
SimplexCategory.Truncated
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.Functor.HasPointwiseRightKanExtension
CategoryTheory.Functor.Full
CategoryTheory.SimplicialObject.Truncated
CategoryTheory.SimplicialObject.instCategoryTruncated
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.Truncated.cosk
CategoryTheory.Functor.FullyFaithful.full

CategoryTheory.SimplicialObject.Truncated.coskAdj

Definitions

NameCategoryTheorems
reflective 📖CompOp

CategoryTheory.SimplicialObject.Truncated.sk

Definitions

NameCategoryTheorems
fullyFaithful 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
faithful 📖mathematicalCategoryTheory.Functor.HasLeftKanExtension
Opposite
SimplexCategory.Truncated
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.Functor.Faithful
CategoryTheory.SimplicialObject.Truncated
CategoryTheory.SimplicialObject.instCategoryTruncated
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.Truncated.sk
CategoryTheory.Functor.FullyFaithful.faithful
full 📖mathematicalCategoryTheory.Functor.HasLeftKanExtension
Opposite
SimplexCategory.Truncated
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.Functor.HasPointwiseLeftKanExtension
CategoryTheory.Functor.Full
CategoryTheory.SimplicialObject.Truncated
CategoryTheory.SimplicialObject.instCategoryTruncated
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.Truncated.sk
CategoryTheory.Functor.FullyFaithful.full

CategoryTheory.SimplicialObject.Truncated.skAdj

Definitions

NameCategoryTheorems
coreflective 📖CompOp

Simplicial

Definitions

NameCategoryTheorems
«term_^⦋_⦌» 📖CompOp
«term__⦋_⦌» 📖CompOp

---

← Back to Index