Documentation Verification Report

Coskeletal

📁 Source: Mathlib/AlgebraicTopology/SimplicialObject/Coskeletal.lean

Statistics

MetricCount
DefinitionsIsCoskeletal, isUniversalOfIsRightKanExtension, rightExtensionInclusion, isoCoskOfIsCoskeletal
4
TheoremsisRightKanExtension, rightExtensionInclusion_hom_app, rightExtensionInclusion_left, rightExtensionInclusion_right_as, instIsIsoAppUnitTruncatedCoskAdj, isCoskeletal_iff, isCoskeletal_iff_isIso, isoCoskOfIsCoskeletal_hom
8
Total12

CategoryTheory.SimplicialObject

Definitions

NameCategoryTheorems
IsCoskeletal 📖CompData
5 mathmath: CategoryTheory.Nerve.instIsCoskeletalNerveOfNatNat, SSet.StrictSegal.isCoskeletal, isCoskeletal_iff, SSet.StrictSegal.isCoskeletal', isCoskeletal_iff_isIso
isoCoskOfIsCoskeletal 📖CompOp
1 mathmath: isoCoskOfIsCoskeletal_hom

Theorems

NameKindAssumesProvesValidatesDepends On
instIsIsoAppUnitTruncatedCoskAdj 📖mathematicalCategoryTheory.Functor.HasRightKanExtension
Opposite
SimplexCategory.Truncated
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.IsIso
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
Truncated
instCategoryTruncated
truncation
Truncated.cosk
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
coskAdj
isCoskeletal_iff_isIso
isCoskeletal_iff 📖mathematicalIsCoskeletal
CategoryTheory.Functor.IsRightKanExtension
Opposite
SimplexCategory.Truncated
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.Functor.comp
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
isCoskeletal_iff_isIso 📖mathematicalCategoryTheory.Functor.HasRightKanExtension
Opposite
SimplexCategory.Truncated
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
IsCoskeletal
CategoryTheory.IsIso
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
Truncated
instCategoryTruncated
truncation
Truncated.cosk
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
coskAdj
isCoskeletal_iff
CategoryTheory.Functor.isRightKanExtension_iff_isIso
CategoryTheory.Adjunction.left_triangle_components
instIsRightKanExtensionOppositeTruncatedSimplexCategoryObjCoskAppTruncatedCounitCoskAdjTruncation
isoCoskOfIsCoskeletal_hom 📖mathematicalCategoryTheory.Functor.HasRightKanExtension
Opposite
SimplexCategory.Truncated
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.Iso.hom
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.obj
cosk
isoCoskOfIsCoskeletal
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
Truncated
instCategoryTruncated
truncation
Truncated.cosk
CategoryTheory.Adjunction.unit
coskAdj

CategoryTheory.SimplicialObject.IsCoskeletal

Definitions

NameCategoryTheorems
isUniversalOfIsRightKanExtension 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isRightKanExtension 📖mathematicalCategoryTheory.Functor.IsRightKanExtension
Opposite
SimplexCategory.Truncated
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.Functor.comp
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category

CategoryTheory.SimplicialObject.Truncated

Definitions

NameCategoryTheorems
rightExtensionInclusion 📖CompOp
3 mathmath: rightExtensionInclusion_hom_app, rightExtensionInclusion_left, rightExtensionInclusion_right_as

Theorems

NameKindAssumesProvesValidatesDepends On
rightExtensionInclusion_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.Comma.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
rightExtensionInclusion
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory.obj
Opposite.unop
rightExtensionInclusion_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.Functor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
SimplexCategory.Truncated
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.len
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
rightExtensionInclusion
rightExtensionInclusion_right_as 📖mathematicalCategoryTheory.Discrete.as
CategoryTheory.Comma.right
CategoryTheory.Functor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
SimplexCategory.Truncated
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.len
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
rightExtensionInclusion

---

← Back to Index