Documentation Verification Report

Op

📁 Source: Mathlib/AlgebraicTopology/SimplicialObject/Op.lean

Statistics

MetricCount
DefinitionsopEquivalence, opFunctor, opFunctorCompOpFunctorIso, opObjIso
4
TheoremsopEquivalence_counitIso, opEquivalence_functor, opEquivalence_inverse, opEquivalence_unitIso, opFunctorCompOpFunctorIso_hom_app_app, opFunctorCompOpFunctorIso_inv_app_app, opFunctor_map_app, opFunctor_obj_map, opFunctor_obj_δ, opFunctor_obj_σ
10
Total14

SimplicialObject

Definitions

NameCategoryTheorems
opEquivalence 📖CompOp
4 mathmath: opEquivalence_counitIso, opEquivalence_unitIso, opEquivalence_inverse, opEquivalence_functor
opFunctor 📖CompOp
9 mathmath: opFunctor_obj_σ, opFunctor_obj_map, opFunctor_map_app, opFunctor_obj_δ, opFunctorCompOpFunctorIso_hom_app_app, opEquivalence_unitIso, opFunctorCompOpFunctorIso_inv_app_app, opEquivalence_inverse, opEquivalence_functor
opFunctorCompOpFunctorIso 📖CompOp
4 mathmath: opEquivalence_counitIso, opFunctorCompOpFunctorIso_hom_app_app, opEquivalence_unitIso, opFunctorCompOpFunctorIso_inv_app_app
opObjIso 📖CompOp
6 mathmath: opFunctor_obj_σ, opFunctor_obj_map, opFunctor_map_app, opFunctor_obj_δ, opFunctorCompOpFunctorIso_hom_app_app, opFunctorCompOpFunctorIso_inv_app_app

Theorems

NameKindAssumesProvesValidatesDepends On
opEquivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
opEquivalence
opFunctorCompOpFunctorIso
opEquivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
opEquivalence
opFunctor
opEquivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
opEquivalence
opFunctor
opEquivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
opEquivalence
CategoryTheory.Iso.symm
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
opFunctor
CategoryTheory.Functor.id
opFunctorCompOpFunctorIso
opFunctorCompOpFunctorIso_hom_app_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.comp
opFunctor
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
opFunctorCompOpFunctorIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opObjIso
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
opFunctorCompOpFunctorIso_inv_app_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
opFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
opFunctorCompOpFunctorIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opObjIso
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
opFunctor_map_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
opFunctor
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
opObjIso
CategoryTheory.Iso.inv
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
opFunctor_obj_map 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
opFunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.op
SimplexCategory.rev
Opposite.unop
CategoryTheory.Iso.hom
opObjIso
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
Quiver.Hom.unop
CategoryTheory.Iso.inv
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
opFunctor_obj_δ 📖mathematicalCategoryTheory.SimplicialObject.δ
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
opFunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.Iso.hom
opObjIso
CategoryTheory.Iso.inv
opFunctor_obj_map
SimplexCategory.rev_map_δ
opFunctor_obj_σ 📖mathematicalCategoryTheory.SimplicialObject.σ
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
opFunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.Iso.hom
opObjIso
CategoryTheory.Iso.inv
opFunctor_obj_map
SimplexCategory.rev_map_σ

---

← Back to Index