Documentation Verification Report

Split

📁 Source: Mathlib/AlgebraicTopology/SimplicialObject/Split.lean

Statistics

MetricCount
DefinitionsSplit, F, f, X, evalN, forget, mk', natTransCofanInj, s, Splitting, IndexSet, EqId, e, epiComp, id, instFintype, instInhabited, mk, pull, N, cofan, cofan', desc, isColimit, isColimit', ofIso, summand, ι, φ, instCategorySplit
30
Theoremscomm, comm_assoc, ext, ext_iff, cofan_inj_naturality_symm, cofan_inj_naturality_symm_assoc, comp_F, comp_f, congr_F, congr_f, evalN_map, evalN_obj, ext, ext_iff, forget_map, forget_obj, hom_ext, hom_ext_iff, id_F, id_f, mk'_X, mk'_s, natTransCofanInj_app, epiComp_fst, epiComp_snd_coe, eqId_iff_eq, eqId_iff_len_eq, eqId_iff_len_le, eqId_iff_mono, ext, ext', fac_pull, fac_pull_assoc, id_fst, id_snd_coe, instEpiSimplexCategoryE, mk_fst, mk_snd_coe, cofan_inj_comp_app, cofan_inj_comp_app_assoc, cofan_inj_epi_naturality, cofan_inj_epi_naturality_assoc, cofan_inj_eq, cofan_inj_eq_assoc, cofan_inj_id, hom_ext, hom_ext', ofIso_N, ofIso_isColimit', ofIso_ι, ι_desc, ι_desc_assoc
52
Total82

SimplicialObject

Definitions

NameCategoryTheorems
Split 📖CompData
18 mathmath: Split.evalN_obj, Split.comp_f, Split.forget_obj, Split.forget_map, Split.comp_F, AlgebraicTopology.DoldKan.Γ₀'_obj, Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, Split.nondegComplexFunctor_map_f, AlgebraicTopology.DoldKan.Γ₀'_map_F, AlgebraicTopology.DoldKan.Γ₀_map_app, Split.nondegComplexFunctor_obj, Split.id_f, Split.natTransCofanInj_app, Split.evalN_map, CategoryTheory.Idempotents.DoldKan.Γ_map_app, Split.toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f, Split.id_F, AlgebraicTopology.DoldKan.Γ₀'_map_f
Splitting 📖CompData
1 mathmath: Split.ext_iff
instCategorySplit 📖CompOp
18 mathmath: Split.evalN_obj, Split.comp_f, Split.forget_obj, Split.forget_map, Split.comp_F, AlgebraicTopology.DoldKan.Γ₀'_obj, Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, Split.nondegComplexFunctor_map_f, AlgebraicTopology.DoldKan.Γ₀'_map_F, AlgebraicTopology.DoldKan.Γ₀_map_app, Split.nondegComplexFunctor_obj, Split.id_f, Split.natTransCofanInj_app, Split.evalN_map, CategoryTheory.Idempotents.DoldKan.Γ_map_app, Split.toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f, Split.id_F, AlgebraicTopology.DoldKan.Γ₀'_map_f

SimplicialObject.Split

Definitions

NameCategoryTheorems
X 📖CompOp
17 mathmath: evalN_obj, comp_f, forget_obj, comp_F, ext_iff, toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, nondegComplexFunctor_map_f, cofan_inj_naturality_symm_assoc, Hom.comm, nondegComplexFunctor_obj, mk'_X, id_f, Hom.comm_assoc, natTransCofanInj_app, toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f, id_F, cofan_inj_naturality_symm
evalN 📖CompOp
3 mathmath: evalN_obj, natTransCofanInj_app, evalN_map
forget 📖CompOp
7 mathmath: forget_obj, forget_map, toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, AlgebraicTopology.DoldKan.Γ₀_map_app, natTransCofanInj_app, CategoryTheory.Idempotents.DoldKan.Γ_map_app, toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f
mk' 📖CompOp
5 mathmath: mk'_s, AlgebraicTopology.DoldKan.Γ₀'_obj, AlgebraicTopology.DoldKan.Γ₀'_map_F, mk'_X, AlgebraicTopology.DoldKan.Γ₀'_map_f
natTransCofanInj 📖CompOp
1 mathmath: natTransCofanInj_app
s 📖CompOp
14 mathmath: evalN_obj, mk'_s, comp_f, ext_iff, toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, nondegComplexFunctor_map_f, cofan_inj_naturality_symm_assoc, Hom.comm, nondegComplexFunctor_obj, id_f, Hom.comm_assoc, natTransCofanInj_app, toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f, cofan_inj_naturality_symm

Theorems

NameKindAssumesProvesValidatesDepends On
cofan_inj_naturality_symm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.N
X
s
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
SimplicialObject.Splitting.IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
SimplicialObject.Splitting.cofan
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.NatTrans.app
Hom.F
SimplexCategory.len
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
Hom.f
SimplicialObject.Splitting.cofan_inj_eq
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.naturality
Hom.comm_assoc
cofan_inj_naturality_symm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.N
X
s
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
SimplicialObject.Splitting.IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
SimplicialObject.Splitting.cofan
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.NatTrans.app
Hom.F
SimplexCategory.len
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
Hom.f
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cofan_inj_naturality_symm
comp_F 📖mathematicalHom.F
CategoryTheory.CategoryStruct.comp
SimplicialObject.Split
CategoryTheory.Category.toCategoryStruct
SimplicialObject.instCategorySplit
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
X
comp_f 📖mathematicalHom.f
CategoryTheory.CategoryStruct.comp
SimplicialObject.Split
CategoryTheory.Category.toCategoryStruct
SimplicialObject.instCategorySplit
SimplicialObject.Splitting.N
X
s
congr_F 📖mathematicalHom.f
congr_f 📖mathematicalHom.f
evalN_map 📖mathematicalCategoryTheory.Functor.map
SimplicialObject.Split
SimplicialObject.instCategorySplit
evalN
Hom.f
evalN_obj 📖mathematicalCategoryTheory.Functor.obj
SimplicialObject.Split
SimplicialObject.instCategorySplit
evalN
SimplicialObject.Splitting.N
X
s
ext 📖X
SimplicialObject.Splitting
s
ext_iff 📖mathematicalX
SimplicialObject.Splitting
s
ext
forget_map 📖mathematicalCategoryTheory.Functor.map
SimplicialObject.Split
SimplicialObject.instCategorySplit
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
forget
Hom.F
forget_obj 📖mathematicalCategoryTheory.Functor.obj
SimplicialObject.Split
SimplicialObject.instCategorySplit
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
forget
X
hom_ext 📖Hom.fHom.ext
hom_ext_iff 📖mathematicalHom.fhom_ext
id_F 📖mathematicalHom.F
CategoryTheory.CategoryStruct.id
SimplicialObject.Split
CategoryTheory.Category.toCategoryStruct
SimplicialObject.instCategorySplit
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
X
id_f 📖mathematicalHom.f
CategoryTheory.CategoryStruct.id
SimplicialObject.Split
CategoryTheory.Category.toCategoryStruct
SimplicialObject.instCategorySplit
SimplicialObject.Splitting.N
X
s
mk'_X 📖mathematicalX
mk'
mk'_s 📖mathematicals
mk'
natTransCofanInj_app 📖mathematicalCategoryTheory.NatTrans.app
SimplicialObject.Split
SimplicialObject.instCategorySplit
evalN
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
CategoryTheory.Epi
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
forget
CategoryTheory.Functor.obj
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.evaluation
natTransCofanInj
SimplicialObject.Splitting.IndexSet
SimplicialObject.Splitting.summand
SimplicialObject.Splitting.N
X
s
SimplicialObject.Splitting.cofan

SimplicialObject.Split.Hom

Definitions

NameCategoryTheorems
F 📖CompOp
8 mathmath: SimplicialObject.Split.forget_map, SimplicialObject.Split.comp_F, AlgebraicTopology.DoldKan.Γ₀'_map_F, SimplicialObject.Split.cofan_inj_naturality_symm_assoc, comm, comm_assoc, SimplicialObject.Split.id_F, SimplicialObject.Split.cofan_inj_naturality_symm
f 📖CompOp
13 mathmath: ext_iff, SimplicialObject.Split.comp_f, SimplicialObject.Split.nondegComplexFunctor_map_f, SimplicialObject.Split.congr_F, SimplicialObject.Split.cofan_inj_naturality_symm_assoc, comm, SimplicialObject.Split.congr_f, SimplicialObject.Split.id_f, comm_assoc, SimplicialObject.Split.evalN_map, SimplicialObject.Split.hom_ext_iff, SimplicialObject.Split.cofan_inj_naturality_symm, AlgebraicTopology.DoldKan.Γ₀'_map_f

Theorems

NameKindAssumesProvesValidatesDepends On
comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.N
SimplicialObject.Split.X
SimplicialObject.Split.s
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
SimplicialObject.Splitting.ι
CategoryTheory.NatTrans.app
F
f
comm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplicialObject.Splitting.N
SimplicialObject.Split.X
SimplicialObject.Split.s
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
SimplicialObject.Splitting.ι
CategoryTheory.NatTrans.app
F
f
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm
ext 📖fSimplicialObject.Splitting.hom_ext
ext_iff 📖mathematicalfext

SimplicialObject.Splitting

Definitions

NameCategoryTheorems
IndexSet 📖CompOp
45 mathmath: cofan_inj_πSummand_eq_id_assoc, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀', AlgebraicTopology.DoldKan.HigherFacesVanish.on_Γ₀_summand_id, AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_id_assoc, cofan_inj_epi_naturality_assoc, ι_desc_assoc, cofan_inj_eq, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand_assoc, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self_assoc, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, cofan_inj_comp_PInfty_eq_zero, ιSummand_comp_d_comp_πSummand_eq_zero, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀, AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f, ofIso_isColimit', πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, cofan_inj_πSummand_eq_id, AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id, SimplicialObject.Split.cofan_inj_naturality_symm_assoc, AlgebraicTopology.DoldKan.Γ₀_map_app, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀'_assoc, cofan_inj_πSummand_eq_zero, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self, cofan_inj_comp_app, AlgebraicTopology.DoldKan.Γ₀.map_app, decomposition_id, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀_assoc, ι_desc, πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty_assoc, SimplicialObject.Split.natTransCofanInj_app, cofan_inj_πSummand_eq_zero_assoc, CategoryTheory.Idempotents.DoldKan.Γ_map_app, cofan_inj_id, AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id_assoc, AlgebraicTopology.DoldKan.Γ₂_map_f_app, AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_id, toKaroubiNondegComplexIsoN₁_hom_f_f, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand', SimplicialObject.Split.cofan_inj_naturality_symm, cofan_inj_comp_app_assoc, cofan_inj_eq_assoc, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'_assoc, cofan_inj_epi_naturality
N 📖CompOp
57 mathmath: cofan_inj_πSummand_eq_id_assoc, AlgebraicTopology.DoldKan.Γ₀NondegComplexIso_inv_f, ofIso_N, AlgebraicTopology.DoldKan.HigherFacesVanish.on_Γ₀_summand_id, SimplicialObject.Split.evalN_obj, PInfty_comp_πSummand_id, AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_id_assoc, cofan_inj_epi_naturality_assoc, SimplicialObject.Split.comp_f, ι_desc_assoc, cofan_inj_eq, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand_assoc, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self_assoc, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, AlgebraicTopology.DoldKan.Γ₀NondegComplexIso_hom_f, cofan_inj_comp_PInfty_eq_zero, ιSummand_comp_d_comp_πSummand_eq_zero, AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f, nondegComplex_X, ofIso_isColimit', πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, cofan_inj_πSummand_eq_id, AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id, SimplicialObject.Split.cofan_inj_naturality_symm_assoc, ofIso_ι, AlgebraicTopology.DoldKan.Γ₀_map_app, SimplicialObject.Split.Hom.comm, cofan_inj_πSummand_eq_zero, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self, cofan_inj_comp_app, AlgebraicTopology.DoldKan.Γ₀.map_app, σ_comp_πSummand_id_eq_zero_assoc, PInfty_comp_πSummand_id_assoc, decomposition_id, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand, SimplicialObject.Split.id_f, SimplicialObject.Split.Hom.comm_assoc, ι_desc, πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty_assoc, SimplicialObject.Split.natTransCofanInj_app, cofan_inj_πSummand_eq_zero_assoc, comp_PInfty_eq_zero_iff, CategoryTheory.Idempotents.DoldKan.Γ_map_app, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, cofan_inj_id, σ_comp_πSummand_id_eq_zero, AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id_assoc, AlgebraicTopology.DoldKan.Γ₂_map_f_app, AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_id, toKaroubiNondegComplexIsoN₁_hom_f_f, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand', SimplicialObject.Split.cofan_inj_naturality_symm, cofan_inj_comp_app_assoc, cofan_inj_eq_assoc, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'_assoc, cofan_inj_epi_naturality
cofan 📖CompOp
41 mathmath: cofan_inj_πSummand_eq_id_assoc, AlgebraicTopology.DoldKan.HigherFacesVanish.on_Γ₀_summand_id, AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_id_assoc, cofan_inj_epi_naturality_assoc, ι_desc_assoc, cofan_inj_eq, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand_assoc, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self_assoc, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, cofan_inj_comp_PInfty_eq_zero, ιSummand_comp_d_comp_πSummand_eq_zero, AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f, ofIso_isColimit', πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, cofan_inj_πSummand_eq_id, AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id, SimplicialObject.Split.cofan_inj_naturality_symm_assoc, AlgebraicTopology.DoldKan.Γ₀_map_app, cofan_inj_πSummand_eq_zero, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self, cofan_inj_comp_app, AlgebraicTopology.DoldKan.Γ₀.map_app, decomposition_id, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand, ι_desc, πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty_assoc, SimplicialObject.Split.natTransCofanInj_app, cofan_inj_πSummand_eq_zero_assoc, CategoryTheory.Idempotents.DoldKan.Γ_map_app, cofan_inj_id, AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id_assoc, AlgebraicTopology.DoldKan.Γ₂_map_f_app, AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_id, toKaroubiNondegComplexIsoN₁_hom_f_f, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand', SimplicialObject.Split.cofan_inj_naturality_symm, cofan_inj_comp_app_assoc, cofan_inj_eq_assoc, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'_assoc, cofan_inj_epi_naturality
cofan' 📖CompOp
1 mathmath: ofIso_isColimit'
desc 📖CompOp
8 mathmath: ι_desc_assoc, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, AlgebraicTopology.DoldKan.Γ₀_map_app, AlgebraicTopology.DoldKan.Γ₀.map_app, ι_desc, CategoryTheory.Idempotents.DoldKan.Γ_map_app, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, AlgebraicTopology.DoldKan.Γ₂_map_f_app
isColimit 📖CompOp
1 mathmath: ofIso_isColimit'
isColimit' 📖CompOp
1 mathmath: ofIso_isColimit'
ofIso 📖CompOp
3 mathmath: ofIso_N, ofIso_isColimit', ofIso_ι
summand 📖CompOp
41 mathmath: cofan_inj_πSummand_eq_id_assoc, AlgebraicTopology.DoldKan.HigherFacesVanish.on_Γ₀_summand_id, AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_id_assoc, cofan_inj_epi_naturality_assoc, ι_desc_assoc, cofan_inj_eq, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand_assoc, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self_assoc, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, cofan_inj_comp_PInfty_eq_zero, ιSummand_comp_d_comp_πSummand_eq_zero, AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f, ofIso_isColimit', πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, cofan_inj_πSummand_eq_id, AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id, SimplicialObject.Split.cofan_inj_naturality_symm_assoc, AlgebraicTopology.DoldKan.Γ₀_map_app, cofan_inj_πSummand_eq_zero, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self, cofan_inj_comp_app, AlgebraicTopology.DoldKan.Γ₀.map_app, decomposition_id, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand, ι_desc, πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty_assoc, SimplicialObject.Split.natTransCofanInj_app, cofan_inj_πSummand_eq_zero_assoc, CategoryTheory.Idempotents.DoldKan.Γ_map_app, cofan_inj_id, AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id_assoc, AlgebraicTopology.DoldKan.Γ₂_map_f_app, AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_id, toKaroubiNondegComplexIsoN₁_hom_f_f, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand', SimplicialObject.Split.cofan_inj_naturality_symm, cofan_inj_comp_app_assoc, cofan_inj_eq_assoc, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'_assoc, cofan_inj_epi_naturality
ι 📖CompOp
7 mathmath: cofan_inj_eq, ofIso_isColimit', ofIso_ι, SimplicialObject.Split.Hom.comm, SimplicialObject.Split.Hom.comm_assoc, cofan_inj_id, cofan_inj_eq_assoc
φ 📖CompOp
2 mathmath: cofan_inj_comp_app, cofan_inj_comp_app_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
cofan_inj_comp_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
summand
N
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
cofan
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.NatTrans.app
SimplexCategory.len
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
Opposite.op
φ
CategoryTheory.Functor.map
Quiver.Hom.op
IndexSet.e
cofan_inj_eq_assoc
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.naturality
cofan_inj_comp_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
summand
N
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
cofan
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.NatTrans.app
Opposite.op
SimplexCategory.len
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
φ
CategoryTheory.Functor.map
Quiver.Hom.op
IndexSet.e
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cofan_inj_comp_app
cofan_inj_epi_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
summand
N
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
cofan
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.map
IndexSet.epiComp
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
cofan_inj_epi_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
summand
N
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
cofan
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.map
IndexSet.epiComp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cofan_inj_epi_naturality
cofan_inj_eq 📖mathematicalIndexSet
summand
N
cofan
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
SimplexCategory.smallCategory
CategoryTheory.Epi
CategoryTheory.Functor.obj
CategoryTheory.Category.opposite
Opposite.op
ι
CategoryTheory.Functor.map
Quiver.Hom.op
IndexSet.e
cofan_inj_eq_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
summand
N
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
cofan
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
SimplexCategory.len
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
ι
CategoryTheory.Functor.map
Quiver.Hom.op
IndexSet.e
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cofan_inj_eq
cofan_inj_id 📖mathematicalIndexSet
Opposite.op
SimplexCategory
summand
N
cofan
IndexSet.id
ι
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
hom_ext 📖φCategoryTheory.SimplicialObject.hom_ext
hom_ext'
cofan_inj_comp_app
hom_ext' 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
summand
N
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
cofan
CategoryTheory.Limits.Cofan.IsColimit.hom_ext
ofIso_N 📖mathematicalN
ofIso
ofIso_isColimit' 📖mathematicalisColimit'
ofIso
CategoryTheory.Limits.IsColimit.ofIsoColimit
CategoryTheory.Discrete
IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
summand
N
cofan
cofan'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
ι
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
isColimit
CategoryTheory.Limits.Cofan.ext
CategoryTheory.Iso.app
ofIso_ι 📖mathematicalι
ofIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
N
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ι_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
summand
N
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
cofan
desc
CategoryTheory.Limits.Cofan.IsColimit.fac
ι_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
summand
N
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Discrete
IndexSet
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
cofan
desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_desc

SimplicialObject.Splitting.IndexSet

Definitions

NameCategoryTheorems
EqId 📖MathDef
4 mathmath: eqId_iff_len_eq, eqId_iff_mono, eqId_iff_eq, eqId_iff_len_le
e 📖CompOp
15 mathmath: fac_pull_assoc, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀', SimplicialObject.Splitting.cofan_inj_eq, ext', eqId_iff_mono, fac_pull, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀'_assoc, instEpiSimplexCategoryE, SimplicialObject.Splitting.cofan_inj_comp_app, epiComp_snd_coe, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand', SimplicialObject.Splitting.cofan_inj_comp_app_assoc, SimplicialObject.Splitting.cofan_inj_eq_assoc, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'_assoc
epiComp 📖CompOp
4 mathmath: epiComp_fst, SimplicialObject.Splitting.cofan_inj_epi_naturality_assoc, epiComp_snd_coe, SimplicialObject.Splitting.cofan_inj_epi_naturality
id 📖CompOp
23 mathmath: id_fst, AlgebraicTopology.DoldKan.HigherFacesVanish.on_Γ₀_summand_id, SimplicialObject.Splitting.PInfty_comp_πSummand_id, AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_id_assoc, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self_assoc, SimplicialObject.Splitting.ιSummand_comp_d_comp_πSummand_eq_zero, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_inv_f_f, AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f, SimplicialObject.Splitting.πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id, id_snd_coe, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self, SimplicialObject.Splitting.σ_comp_πSummand_id_eq_zero_assoc, SimplicialObject.Splitting.PInfty_comp_πSummand_id_assoc, SimplicialObject.Splitting.πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty_assoc, SimplicialObject.Splitting.comp_PInfty_eq_zero_iff, SimplicialObject.Splitting.cofan_inj_id, SimplicialObject.Splitting.σ_comp_πSummand_id_eq_zero, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f, AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id_assoc, AlgebraicTopology.DoldKan.Γ₀.Obj.map_epi_on_summand_id, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f
instFintype 📖CompOp
5 mathmath: AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀', AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀'_assoc, SimplicialObject.Splitting.decomposition_id, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀_assoc
instInhabited 📖CompOp
mk 📖CompOp
pull 📖CompOp
6 mathmath: fac_pull_assoc, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀', fac_pull, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀'_assoc, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand', AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
epiComp_fst 📖mathematicalOpposite
SimplexCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
Opposite.unop
CategoryTheory.Epi
epiComp
epiComp_snd_coe 📖mathematicalQuiver.Hom
SimplexCategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
Opposite.unop
Opposite
CategoryTheory.Epi
epiComp
CategoryTheory.CategoryStruct.comp
Quiver.Hom.unop
e
eqId_iff_eq 📖mathematicalEqId
Opposite
SimplexCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
Opposite.unop
CategoryTheory.Epi
ext
CategoryTheory.Category.comp_id
SimplexCategory.eq_id_of_epi
eqId_iff_len_eq 📖mathematicalEqId
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
CategoryTheory.Epi
eqId_iff_eq
Opposite.unop_inj_iff
SimplexCategory.ext
eqId_iff_len_le 📖mathematicalEqId
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
CategoryTheory.Epi
eqId_iff_len_eq
le_refl
le_antisymm
SimplexCategory.len_le_of_epi
instEpiSimplexCategoryE
eqId_iff_mono 📖mathematicalEqId
CategoryTheory.Mono
SimplexCategory
SimplexCategory.smallCategory
Opposite.unop
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Epi
e
CategoryTheory.instMonoId
eqId_iff_len_le
SimplexCategory.len_le_of_mono
ext 📖Opposite
SimplexCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
Opposite.unop
CategoryTheory.Epi
CategoryTheory.CategoryStruct.comp
e
CategoryTheory.eqToHom
CategoryTheory.Category.comp_id
ext' 📖mathematicalOpposite
SimplexCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
Opposite.unop
CategoryTheory.Epi
e
fac_pull 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
Opposite.unop
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
pull
e
CategoryTheory.Limits.image.ι
Quiver.Hom.unop
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
SimplexCategory.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.image.fac
fac_pull_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SimplexCategory
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
Opposite.unop
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Epi
pull
e
CategoryTheory.Limits.image.ι
Quiver.Hom.unop
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
SimplexCategory.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
SimplexCategory.instHasStrongEpiMonoFactorisations
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac_pull
id_fst 📖mathematicalOpposite
SimplexCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
Opposite.unop
CategoryTheory.Epi
id
id_snd_coe 📖mathematicalQuiver.Hom
SimplexCategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
Opposite.unop
CategoryTheory.Epi
Opposite
id
CategoryTheory.CategoryStruct.id
instEpiSimplexCategoryE 📖mathematicalCategoryTheory.Epi
SimplexCategory
SimplexCategory.smallCategory
Opposite.unop
Opposite
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
e
mk_fst 📖mathematicalOpposite
SimplexCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
Opposite.unop
Opposite.op
CategoryTheory.Epi
mk_snd_coe 📖mathematicalQuiver.Hom
SimplexCategory
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.smallCategory
Opposite.unop
Opposite.op
CategoryTheory.Epi
Opposite

---

← Back to Index