| Name | Category | Theorems |
AncestralRel 📖 | MathDef | 7 mathmath: instFiniteSubtypeElemNIIAncestralRel, WeakRankFunction.wf_ancestralRel, RankFunction.wf_ancestralRel, IsRegular.wf, SSet.Subcomplex.PairingCore.ancestralRel_iff, instIsWellFoundedElemNIIAncestralRel, wf
|
I 📖 | CompOp | 8 mathmath: IsProper.isUniquelyCodimOneFace, dim_p, isUniquelyCodimOneFace, SSet.Subcomplex.PairingCore.pairing_I, union, exists_or, inter, SSet.Subcomplex.PairingCore.pairing_p_symm_equivI
|
IsInner 📖 | CompData | 1 mathmath: SSet.Subcomplex.PairingCore.instIsInnerPairingOfIsInner
|
IsProper 📖 | CompData | 2 mathmath: IsRegular.toIsProper, SSet.Subcomplex.PairingCore.instIsProperPairingOfIsProper
|
IsRegular 📖 | CompData | 5 mathmath: SSet.Subcomplex.PairingCore.instIsRegularPairingOfIsRegular, RankFunction.isRegular, WeakRankFunction.isRegular, isRegular_iff_nonempty_weakRankFunction, isRegular_iff_nonempty_rankFunction
|
p 📖 | CompOp | 6 mathmath: IsProper.isUniquelyCodimOneFace, dim_p, isUniquelyCodimOneFace, SSet.Subcomplex.PairingCore.pairing_p_equivII, exists_or, SSet.Subcomplex.PairingCore.pairing_p_symm_equivI
|