Documentation Verification Report

Pairing

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/AnodyneExtensions/Pairing.lean

Statistics

MetricCount
DefinitionsAncestralRel, I, IsInner, IsProper, IsRegular, p
6
Theoremsdim_le, ne_last, ne_zero, isUniquelyCodimOneFace, toIsProper, wf, dim_p, exists_or, instIsWellFoundedElemNIIAncestralRel, inter, isUniquelyCodimOneFace, ne, union, wf
14
Total20

SSet.Subcomplex.Pairing

Definitions

NameCategoryTheorems
AncestralRel 📖MathDef
7 mathmath: instFiniteSubtypeElemNIIAncestralRel, WeakRankFunction.wf_ancestralRel, RankFunction.wf_ancestralRel, IsRegular.wf, SSet.Subcomplex.PairingCore.ancestralRel_iff, instIsWellFoundedElemNIIAncestralRel, wf
I 📖CompOp
8 mathmath: IsProper.isUniquelyCodimOneFace, dim_p, isUniquelyCodimOneFace, SSet.Subcomplex.PairingCore.pairing_I, union, exists_or, inter, SSet.Subcomplex.PairingCore.pairing_p_symm_equivI
IsInner 📖CompData
1 mathmath: SSet.Subcomplex.PairingCore.instIsInnerPairingOfIsInner
IsProper 📖CompData
2 mathmath: IsRegular.toIsProper, SSet.Subcomplex.PairingCore.instIsProperPairingOfIsProper
IsRegular 📖CompData
5 mathmath: SSet.Subcomplex.PairingCore.instIsRegularPairingOfIsRegular, RankFunction.isRegular, WeakRankFunction.isRegular, isRegular_iff_nonempty_weakRankFunction, isRegular_iff_nonempty_rankFunction
p 📖CompOp
6 mathmath: IsProper.isUniquelyCodimOneFace, dim_p, isUniquelyCodimOneFace, SSet.Subcomplex.PairingCore.pairing_p_equivII, exists_or, SSet.Subcomplex.PairingCore.pairing_p_symm_equivI

Theorems

NameKindAssumesProvesValidatesDepends On
dim_p 📖mathematicalSSet.S.dim
SSet.N.toS
SSet.Subcomplex.N.toN
SSet.Subcomplex.N
Set
Set.instMembership
I
DFunLike.coe
Equiv
Set.Elem
II
EquivLike.toFunLike
Equiv.instEquivLike
p
SSet.S.IsUniquelyCodimOneFace.dim_eq
isUniquelyCodimOneFace
exists_or 📖mathematicalSSet.Subcomplex.N
Set
Set.instMembership
II
I
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
p
Set.mem_univ
Set.mem_union
union
Equiv.surjective
instIsWellFoundedElemNIIAncestralRel 📖mathematicalIsWellFounded
Set.Elem
SSet.Subcomplex.N
II
AncestralRel
wf
inter 📖mathematicalSet
SSet.Subcomplex.N
Set.instInter
I
II
Set.instEmptyCollection
isUniquelyCodimOneFace 📖mathematicalSSet.S.IsUniquelyCodimOneFace
SSet.N.toS
SSet.Subcomplex.N.toN
SSet.Subcomplex.N
Set
Set.instMembership
II
I
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
p
IsProper.isUniquelyCodimOneFace
ne 📖inter
union 📖mathematicalSet
SSet.Subcomplex.N
Set.instUnion
I
II
Set.univ
wf 📖mathematicalSet.Elem
SSet.Subcomplex.N
II
AncestralRel
IsRegular.wf

SSet.Subcomplex.Pairing.AncestralRel

Theorems

NameKindAssumesProvesValidatesDepends On
dim_le 📖mathematicalSSet.Subcomplex.Pairing.AncestralRelSSet.S.dim
SSet.N.toS
SSet.Subcomplex.N.toN
SSet.Subcomplex.N
Set
Set.instMembership
SSet.Subcomplex.Pairing.II
SSet.S.IsUniquelyCodimOneFace.dim_eq
SSet.Subcomplex.Pairing.isUniquelyCodimOneFace
SSet.N.dim_lt_of_lt

SSet.Subcomplex.Pairing.IsInner

Theorems

NameKindAssumesProvesValidatesDepends On
ne_last 📖SSet.S.dim
SSet.N.toS
SSet.Subcomplex.N.toN
SSet.Subcomplex.N
Set
Set.instMembership
SSet.Subcomplex.Pairing.II
ne_zero 📖SSet.S.dim
SSet.N.toS
SSet.Subcomplex.N.toN
SSet.Subcomplex.N
Set
Set.instMembership
SSet.Subcomplex.Pairing.II

SSet.Subcomplex.Pairing.IsProper

Theorems

NameKindAssumesProvesValidatesDepends On
isUniquelyCodimOneFace 📖mathematicalSSet.S.IsUniquelyCodimOneFace
SSet.N.toS
SSet.Subcomplex.N.toN
SSet.Subcomplex.N
Set
Set.instMembership
SSet.Subcomplex.Pairing.II
SSet.Subcomplex.Pairing.I
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
SSet.Subcomplex.Pairing.p

SSet.Subcomplex.Pairing.IsRegular

Theorems

NameKindAssumesProvesValidatesDepends On
toIsProper 📖mathematicalSSet.Subcomplex.Pairing.IsProper
wf 📖mathematicalSet.Elem
SSet.Subcomplex.N
SSet.Subcomplex.Pairing.II
SSet.Subcomplex.Pairing.AncestralRel

---

← Back to Index