Documentation Verification Report

RankNat

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/AnodyneExtensions/RankNat.lean

Statistics

MetricCount
Definitionsrank, rank', rankFunction
3
TheoremsinstFiniteSubtypeElemNIIAncestralRel, instNonemptyRankFunctionNat, instNonemptyWeakRankFunctionNat, isRegular_iff_nonempty_rankFunction, isRegular_iff_nonempty_weakRankFunction, rank'_eq, rank'_lt, rank_lt
8
Total11

SSet.Subcomplex.Pairing

Definitions

NameCategoryTheorems
rank 📖CompOp
1 mathmath: rank_lt
rank' 📖CompOp
2 mathmath: rank'_lt, rank'_eq
rankFunction 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instFiniteSubtypeElemNIIAncestralRel 📖mathematicalFinite
Set.Elem
SSet.Subcomplex.N
II
AncestralRel
SSet.N.le_iff_exists_mono
LT.lt.le
SSet.N.dim_lt_of_lt
SSet.S.ext_iff
Finite.of_injective
Finite.instSigma
Finite.of_fintype
SimplexCategory.instFiniteHom
SSet.Subcomplex.N.ext_iff
SSet.N.ext_iff
instNonemptyRankFunctionNat 📖mathematicalRankFunction
Nat.instPartialOrder
instNonemptyWeakRankFunctionNat 📖mathematicalWeakRankFunction
Nat.instPartialOrder
isRegular_iff_nonempty_rankFunction 📖mathematicalIsRegular
RankFunction
Nat.instPartialOrder
instNonemptyRankFunctionNat
RankFunction.isRegular
instWellFoundedLTNat
isRegular_iff_nonempty_weakRankFunction 📖mathematicalIsRegular
WeakRankFunction
Nat.instPartialOrder
instNonemptyWeakRankFunctionNat
WeakRankFunction.isRegular
instWellFoundedLTNat
rank'_eq 📖mathematicalSet.Elem
SSet.Subcomplex.N
II
AncestralRel
rank'
iSup
Nat.instSupSet
rank'_lt 📖mathematicalSet.Elem
SSet.Subcomplex.N
II
AncestralRel
rank'rank'_eq
le_csSup
Finite.bddAbove_range
instFiniteSubtypeElemNIIAncestralRel
SemilatticeSup.instIsDirectedOrder
rank_lt 📖mathematicalAncestralRelrankrank'_lt

---

← Back to Index