Documentation Verification Report

Basic

šŸ“ Source: Mathlib/AlgebraicTopology/SimplicialSet/Basic.lean

Statistics

MetricCount
DefinitionsSSet, cosk, fullyFaithful, reflective, largeCategory, sk, fullyFaithful, coreflective, trunc, uliftFunctor, const, cosk, coskAdj, largeCategory, sk, skAdj, truncation, truncationCompTrunc, uliftFunctor
19
Theoremscomp_app, comp_app_assoc, faithful, full, cosk_reflective, hasColimits, hasLimits, hom_ext, hom_ext_iff, id_app, faithful, full, sk_coreflective, comp_app, comp_app_assoc, comp_const, const_app, const_comp, hasColimits, hasLimits, hom_ext, hom_ext_iff, id_app, Γ_comp_Γ''_apply, Γ_comp_Γ'_apply, Γ_comp_Γ_apply, Γ_comp_Γ_self'_apply, Γ_comp_Γ_self_apply, Γ_comp_σ_of_gt'_apply, Γ_comp_σ_of_gt_apply, Γ_comp_σ_of_le_apply, Γ_comp_σ_self'_apply, Γ_comp_σ_self_apply, Γ_comp_σ_succ'_apply, Γ_comp_σ_succ_apply, Γ_naturality_apply, σ_comp_σ_apply, σ_naturality_apply
38
Total57

SSet

Definitions

NameCategoryTheorems
const šŸ“–CompOp
24 mathmath: PtSimplex.RelStruct.Ī“_map_of_lt, ι₀_snd_assoc, PtSimplex.MulStruct.Ī“_map_of_gt, PtSimplex.RelStruct.Ī“_castSucc_map, PtSimplex.RelStruct.Ī“_castSucc_map_assoc, PtSimplex.MulStruct.Ī“_succ_succ_map_assoc, RelativeMorphism.ofSimplexā‚€_map, PtSimplex.MulStruct.Ī“_succ_succ_map, ι₀_snd, PtSimplex.MulStruct.Ī“_succ_castSucc_map, ι₁_snd_assoc, ι₁_snd, comp_const, const_app, PtSimplex.MulStruct.Ī“_map_of_lt, const_comp, PtSimplex.MulStruct.Ī“_castSucc_castSucc_map_assoc, Subcomplex.ofSimplex_ι, RelativeMorphism.const_map, PtSimplex.RelStruct.Ī“_succ_map, PtSimplex.RelStruct.Ī“_map_of_gt, PtSimplex.MulStruct.Ī“_succ_castSucc_map_assoc, PtSimplex.RelStruct.Ī“_succ_map_assoc, PtSimplex.MulStruct.Ī“_castSucc_castSucc_map
cosk šŸ“–CompOp—
coskAdj šŸ“–CompOp
1 mathmath: Truncated.cosk_reflective
largeCategory šŸ“–CompOp
279 mathmath: OneTruncationā‚‚.nerveEquiv_apply, Subcomplex.lift_ι, stdSimplex.mem_nonDegenerate_iff_strictMono, OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_map, PtSimplex.RelStruct.Ī“_map_of_lt, Subcomplex.toRange_ι, Truncated.sk.full, ι₀_snd_assoc, Truncated.HomotopyCategory.descOfTruncation_comp, CategoryTheory.SimplicialThickening.SimplicialCategory.comp_id, modelCategoryQuillen.I_le_monomorphisms, instIsDiscreteHomotopyCategoryObjTruncatedOfNatNatTruncationSimplexCategoryStdSimplexMk, horn.faceSingletonComplIso_inv_ι_assoc, hasColimits, stdSimplex.faceSingletonIso_zero_hom_comp_ι_eq_Ī“, Subcomplex.fromPreimage_ι_assoc, Subcomplex.toSSetFunctor_map, iSup_subcomplexOfSimplex_prod_eq_top, stdSimplex.objā‚€Equiv_symm_apply, OneTruncationā‚‚.nerveHomEquiv_id, CategoryTheory.nerve.functorOfNerveMap_map, opFunctorCompOpFunctorIso_inv_app_app, modelCategoryQuillen.mono_of_cofibration, Subcomplex.range_eq_ofSimplex, PtSimplex.MulStruct.Ī“_map_of_gt, instHasDimensionLETensorUnitOfNatNat, tensorHom_app_apply, Truncated.sk_coreflective, CategoryTheory.nerveFunctor.faithful, hoFunctor.preservesTerminal', prodStdSimplex.instHasDimensionLETensorObjObjSimplexCategoryStdSimplexMkHAddNat, Subcomplex.toImage_ι, horn.yonedaEquiv_ι, Finite.instIsFinitelyPresentableObjSimplexCategoryStdSimplex, instIsLeftKanExtensionSimplexCategoryTopCatSSetToTopInvFunctorToTopSimplex, Subcomplex.topIso_inv_app_coe, prodStdSimplex.orderHomOfSimplex_coe, Subcomplex.homOfLE_refl, opFunctorCompOpFunctorIso_hom_app_app, hasDimensionLT_prod, instIsStableUnderFilteredColimitsMonomorphisms, Subcomplex.toRange_ι_assoc, RelativeMorphism.Homotopy.hā‚€_assoc, prodStdSimplex.objEquiv_apply_fst, stdSimplex.map_id, Subcomplex.lift_ι_assoc, modelCategoryQuillen.fibrations_eq, modelCategoryQuillen.cofibrations_eq, opEquivalence_inverse, instFiniteTensorUnit, Edge.ofTruncated_edge, hornā‚‚ā‚‚.sq, nonDegenerateEquivOfIso_symm_apply_coe, Subcomplex.image_id, stdSimplex.ext_iff, opFunctor_map, Subcomplex.toImage_ι_assoc, Subcomplex.topIso_inv_ι, prodStdSimplex.strictMono_orderHomOfSimplex_iff, Subcomplex.ofSimplexProd_eq_range, stdSimplex.face_eq_ofSimplex, PtSimplex.RelStruct.Ī“_castSucc_map, stdSimplex.objā‚€Equiv_apply, prodStdSimplex.objEquiv_Ī“_apply, horn.faceSingletonComplIso_inv_ι, Subcomplex.toSSetFunctor_obj, Subcomplex.instSubsingletonHomToSSetBot, instBalanced, prodStdSimplex.objEquiv_naturality, modelCategoryQuillen.instHasLiftingPropertyιHornHAddNatOfNatOfFibration, stdSimplex.spineId_arrow_apply_zero, comp_app_assoc, Subcomplex.eqToIso_hom, stdSimplex.range_Ī“, PtSimplex.RelStruct.Ī“_castSucc_map_assoc, PtSimplex.MulStruct.Ī“_succ_succ_map_assoc, id_app, instFiniteTensorObj, Augmented.stdSimplex_map_right, PtSimplex.MulStruct.Ī“_succ_succ_map, Subcomplex.homOfLE_comp_assoc, prodStdSimplex.objEquiv_apply_snd, Subcomplex.instEpiToImage, hoFunctor.unitHomEquiv_eq, Augmented.stdSimplex_obj_left, instIsStableUnderCoproductsMonomorphismsOfHasCoproductsType, stdSimplex.faceSingletonIso_zero_hom_comp_ι_eq_Ī“_assoc, instFiniteObjOppositeSimplexCategoryTensorObj, horn.spineId_map_hornInclusion, instFiniteCoprod, horn_obj, leftUnitor_inv_app_apply, ι₀_fst_assoc, ι₁_comp, Subcomplex.yonedaEquiv_coe, CategoryTheory.hoFunctor.preservesFiniteProducts, OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_obj, Subcomplex.homOfLE_ι_assoc, whiskerRight_app_apply, rightUnitor_inv_app_apply, stdSimplex.face_obj, stdSimplex.nonDegenerateEquiv_apply_apply, modelCategoryQuillen.horn_ι_mem_J, stdSimplex.map_apply, ι₀_snd, PtSimplex.MulStruct.Ī“_succ_castSucc_map, CategoryTheory.hoFunctor.instIsLeftAdjointSSetCatHoFunctor, Subcomplex.image_comp, hornā‚‚ā‚€.sq, stdSimplex.mem_face_iff, hoFunctor.preservesTerminal, CategoryTheory.SimplicialThickening.functor_map, stdSimplex.faceSingletonIso_one_hom_comp_ι_eq_Ī“, instIsStableUnderCobaseChangeMonomorphisms, ι₁_snd_assoc, horn.edge_coe, modelCategoryQuillen.cofibration_of_mono, OneTruncationā‚‚.nerveEquiv_symm_apply_map, stdSimplex.isoNerve_hom_app_apply, stdSimplex.faceSingletonComplIso_hom_ι, instHasDimensionLETensorObjHAddNat, ι₁_app_fst, ι₁_snd, whiskerLeft_app_apply, comp_app, CategoryTheory.nerveFunctor_map, Subcomplex.prod_obj, comp_const, stdSimplex.instFiniteObjOppositeSimplexCategory, Truncated.HomotopyCategory.descOfTruncation_map_homMk, RelativeMorphism.comm_assoc, Subcomplex.instMonoToRange, modelCategoryQuillen.cofibration_iff, instHasDimensionLTTensorObjHAddNat, Subcomplex.homOfLE_ι, face_le_horn, CategoryTheory.hoFunctor.preservesBinaryProducts, Subcomplex.image_eq_range, RelativeMorphism.comm, PtSimplex.MulStruct.Ī“_map_of_lt, stdSimplex.instHasDimensionLEObjSimplexCategoryMk, stdSimplex.monotone_apply, horn.faceι_ι, Truncated.HomotopyCategory.homToNerveMk_app_one, prodStdSimplex.objEquiv_map_apply, stdSimplex.objEquiv_symm_mem_nonDegenerate_iff_mono, CategoryTheory.hoFunctor.isIso_prodComparison_stdSimplex, Subcomplex.homOfLE_comp, horn.edgeā‚ƒ_coe_down, CategoryTheory.SimplicialThickening.SimplicialCategory.assoc, Subcomplex.topIso_inv_ι_assoc, horn₂₁.isPushout, horn_eq_iSup, stdSimplex.objā‚€Equiv_symm_mem_face_iff, range_eq_iSup_sigma_ι, Subcomplex.BicartSq.isPushout, Subcomplex.range_comp, prodStdSimplex.instFiniteTensorObjObjSimplexCategoryStdSimplexMk, stdSimplex.objEquiv_symm_comp, Subcomplex.eqToIso_inv, Subcomplex.prod_monotone, ι₀_comp_assoc, Subcomplex.instMonoι, ι₀_comp, opEquivalence_unitIso, Augmented.stdSimplex_obj_hom_app, horn.faceι_ι_assoc, RelativeMorphism.Homotopy.h₁_assoc, CategoryTheory.nerveFunctor.full, stdSimplex.yonedaEquiv_map, RelativeMorphism.Homotopy.ofEq_h, horn_obj_zero, horn.spineId_vertex_coe, rightUnitor_hom_app_apply, horn.multicoequalizerDiagram, horn.spineId_arrow_coe, iSup_range_eq_top_of_isColimit, stdSimplex.objEquiv_toOrderHom_apply, ι₁_fst, const_comp, PtSimplex.MulStruct.Ī“_castSucc_castSucc_map_assoc, Truncated.cosk.faithful, Subcomplex.liftPath_arrow_coe, hornā‚‚ā‚€.isPushout, stdSimplex.ofSimplex_yonedaEquiv_Ī“, prodStdSimplex.nonDegenerate_iff_injective_objEquiv, Quasicategory.hornFilling, stdSimplex.instFiniteObjSimplexCategory, stdSimplex.objMk_apply, Truncated.HomotopyCategory.homToNerveMk_app_edge, OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_map, RelativeMorphism.Homotopy.hā‚€, nonDegenerateEquivOfIso_apply_coe, modelCategoryQuillen.boundary_ι_mem_I, Augmented.stdSimplex_map_left, stdSimplex.faceSingletonComplIso_hom_ι_assoc, Finite.exists_epi_from_isCardinalPresentable, ι₀_fst, associator_hom_app_apply, Truncated.cosk.full, OneTruncationā‚‚.nerveEquiv_symm_apply_obj, Subcomplex.liftPath_vertex_coe, modelCategoryQuillen.J_le_monomorphisms, CategoryTheory.hoFunctor.instIsIsoCatProdComparisonSSetHoFunctorNerve, boundary_eq_iSup, RelativeMorphism.Homotopy.h₁, stdSimplex.spineId_vertex, Subcomplex.range_tensorHom, Truncated.cosk_reflective, CategoryTheory.hoFunctor.preservesBinaryProduct, CategoryTheory.nerve.functorOfNerveMap_nerveFunctorā‚‚_map, stdSimplex.face_inter_face, CategoryTheory.nerveFunctor_obj, stdSimplex.mem_nonDegenerate_iff_mono, Subcomplex.mono_homOfLE, hornā‚‚ā‚‚.isPushout, prodStdSimplex.nonDegenerate_iff_strictMono_objEquiv, yonedaEquiv_comp, stdSimplex.spineId_arrow_apply_one, Quasicategory.hornFilling', OneTruncationā‚‚.nerveHomEquiv_apply, Subcomplex.instEpiToRange, instFiniteSigmaObjOfFinite, RelativeMorphism.Homotopy.rel, horn.primitiveEdge_coe_down, stdSimplex.faceSingletonIso_one_hom_comp_ι_eq_Ī“_assoc, Subcomplex.range_eq_top_iff, Truncated.HomotopyCategory.homToNerveMk_app_zero, Subcomplex.fromPreimage_ι, stdSimplex.face_le_face_iff, Finite.instIsFinitelyPresentable, RelativeMorphism.Homotopy.refl_h, truncation_spine, PtSimplex.RelStruct.Ī“_succ_map, Truncated.HomotopyCategory.homToNerveMk_comp, CategoryTheory.SimplicialThickening.functor_id, modelCategoryQuillen.fibration_iff, hasDimensionLE_prod, ι₁_fst_assoc, hasLimits, Subcomplex.topIso_hom, Edge.toTruncated_id, horn.ι_ι_assoc, Truncated.sk.faithful, opEquivalence_counitIso, leftUnitor_hom_app_apply, stdSimplex.objEquiv_symm_apply, StrictSegal.instIsStrictSegalObjTruncatedHAddNatOfNatTruncationOfIsStrictSegal, KanComplex.hornFilling, PtSimplex.RelStruct.Ī“_map_of_gt, Truncated.HomotopyCategory.descOfTruncation_obj_mk, associator_inv_app_apply, stdSimplex.nonDegenerateEquiv_symm_apply_coe, horn.ι_ι, CategoryTheory.hoFunctor.isIso_prodComparison, CategoryTheory.SimplicialThickening.functor_obj_as, instIsRegularEpiCategory, CategoryTheory.instIsIsoSSetProdComparisonCatCompNerveFunctorHoFunctorOf, PtSimplex.MulStruct.Ī“_succ_castSucc_map_assoc, horn.const_val_apply, CategoryTheory.nerveAdjunction.isIso_counit, horn₂₁.sq, CategoryTheory.SimplicialThickening.SimplicialCategory.id_comp, instFinitePullback, Truncated.HomotopyCategory.homToNerveMk_comp_assoc, CategoryTheory.SimplicialThickening.functor_comp, horn.primitiveTriangle_coe, stdSimplex.face_singleton_compl, ι₀_app_fst, Edge.toTruncated_edge, range_eq_iSup_of_isColimit, Subcomplex.instIsIsoToRangeOfMono, ι₁_comp_assoc, PtSimplex.RelStruct.Ī“_succ_map_assoc, opEquivalence_functor, stdSimplex.isoNerve_inv_app_apply, instFiniteInitial, PtSimplex.MulStruct.Ī“_castSucc_castSucc_map, RelativeMorphism.Homotopy.rel_assoc
sk šŸ“–CompOp—
skAdj šŸ“–CompOp
1 mathmath: Truncated.sk_coreflective
truncation šŸ“–CompOp
30 mathmath: OneTruncationā‚‚.nerveEquiv_apply, OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_map, Truncated.HomotopyCategory.descOfTruncation_comp, instIsDiscreteHomotopyCategoryObjTruncatedOfNatNatTruncationSimplexCategoryStdSimplexMk, OneTruncationā‚‚.nerveHomEquiv_id, CategoryTheory.nerve.functorOfNerveMap_map, Truncated.sk_coreflective, Edge.ofTruncated_edge, OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_obj, OneTruncationā‚‚.nerveEquiv_symm_apply_map, Truncated.HomotopyCategory.descOfTruncation_map_homMk, Truncated.HomotopyCategory.homToNerveMk_app_one, horn.spineId_vertex_coe, horn.spineId_arrow_coe, Subcomplex.liftPath_arrow_coe, Truncated.HomotopyCategory.homToNerveMk_app_edge, OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_map, OneTruncationā‚‚.nerveEquiv_symm_apply_obj, Subcomplex.liftPath_vertex_coe, Truncated.cosk_reflective, CategoryTheory.nerve.functorOfNerveMap_nerveFunctorā‚‚_map, OneTruncationā‚‚.nerveHomEquiv_apply, Truncated.HomotopyCategory.homToNerveMk_app_zero, truncation_spine, Truncated.HomotopyCategory.homToNerveMk_comp, Edge.toTruncated_id, StrictSegal.instIsStrictSegalObjTruncatedHAddNatOfNatTruncationOfIsStrictSegal, Truncated.HomotopyCategory.descOfTruncation_obj_mk, Truncated.HomotopyCategory.homToNerveMk_comp_assoc, Edge.toTruncated_edge
truncationCompTrunc šŸ“–CompOp—
uliftFunctor šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
comp_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
largeCategory
CategoryTheory.Functor.obj
——
comp_app_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.NatTrans.app
SSet
largeCategory
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_app
comp_const šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
largeCategory
const
——
const_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
const
CategoryTheory.Functor.map
Opposite.op
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.const
SimplexCategory.len
SimplexCategory.instOfNatToTypeOrderHomFinHAddNatLenOfNat
——
const_comp šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
largeCategory
const
CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
—hom_ext
CategoryTheory.types_ext
CategoryTheory.FunctorToTypes.naturality
hasColimits šŸ“–mathematical—CategoryTheory.Limits.HasColimits
SSet
largeCategory
—CategoryTheory.SimplicialObject.instHasColimits
CategoryTheory.Limits.Types.hasColimitsOfSize
UnivLE.self
hasLimits šŸ“–mathematical—CategoryTheory.Limits.HasLimits
SSet
largeCategory
—CategoryTheory.SimplicialObject.instHasLimits
CategoryTheory.Limits.Types.hasLimitsOfSize
UnivLE.self
hom_ext šŸ“–ā€”CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
——CategoryTheory.SimplicialObject.hom_ext
hom_ext_iff šŸ“–mathematical—CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
—hom_ext
id_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.CategoryStruct.id
SSet
CategoryTheory.Category.toCategoryStruct
largeCategory
CategoryTheory.Functor.obj
——
Ī“_comp_Ī“''_apply šŸ“–mathematical—CategoryTheory.SimplicialObject.Ī“
CategoryTheory.types
Fin.le_iff_val_le_val
—Fin.le_iff_val_le_val
CategoryTheory.SimplicialObject.Γ_comp_Γ''
Ī“_comp_Ī“'_apply šŸ“–mathematical—CategoryTheory.SimplicialObject.Ī“
CategoryTheory.types
—CategoryTheory.SimplicialObject.Ī“_comp_Ī“'
Ī“_comp_Ī“_apply šŸ“–mathematical—CategoryTheory.SimplicialObject.Ī“
CategoryTheory.types
—CategoryTheory.SimplicialObject.Ī“_comp_Ī“
Ī“_comp_Ī“_self'_apply šŸ“–mathematical—CategoryTheory.SimplicialObject.Ī“
CategoryTheory.types
—CategoryTheory.SimplicialObject.Ī“_comp_Ī“_self'
Ī“_comp_Ī“_self_apply šŸ“–mathematical—CategoryTheory.SimplicialObject.Ī“
CategoryTheory.types
—CategoryTheory.SimplicialObject.Ī“_comp_Ī“_self
Ī“_comp_σ_of_gt'_apply šŸ“–mathematical—CategoryTheory.SimplicialObject.Ī“
CategoryTheory.types
CategoryTheory.SimplicialObject.σ
add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instPartialOrder
covariant_swap_add_of_covariant_add
Preorder.toLE
PartialOrder.toPreorder
Nat.instAddCommSemigroup
IsOrderedAddMonoid.toAddLeftMono
Nat.instAddCommMonoid
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
Nat.instLinearOrder
lt_of_lt_of_le
Nat.instPreorder
—add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
lt_of_lt_of_le
CategoryTheory.SimplicialObject.Γ_comp_σ_of_gt'
Ī“_comp_σ_of_gt_apply šŸ“–mathematical—CategoryTheory.SimplicialObject.Ī“
CategoryTheory.types
CategoryTheory.SimplicialObject.σ
—CategoryTheory.SimplicialObject.Ī“_comp_σ_of_gt
Ī“_comp_σ_of_le_apply šŸ“–mathematical—CategoryTheory.SimplicialObject.Ī“
CategoryTheory.types
CategoryTheory.SimplicialObject.σ
—CategoryTheory.SimplicialObject.Ī“_comp_σ_of_le
Ī“_comp_σ_self'_apply šŸ“–mathematical—CategoryTheory.SimplicialObject.Ī“
CategoryTheory.types
CategoryTheory.SimplicialObject.σ
—CategoryTheory.SimplicialObject.Ī“_comp_σ_self'
Ī“_comp_σ_self_apply šŸ“–mathematical—CategoryTheory.SimplicialObject.Ī“
CategoryTheory.types
CategoryTheory.SimplicialObject.σ
—CategoryTheory.SimplicialObject.Ī“_comp_σ_self
Ī“_comp_σ_succ'_apply šŸ“–mathematical—CategoryTheory.SimplicialObject.Ī“
CategoryTheory.types
CategoryTheory.SimplicialObject.σ
—CategoryTheory.SimplicialObject.Ī“_comp_σ_succ'
Ī“_comp_σ_succ_apply šŸ“–mathematical—CategoryTheory.SimplicialObject.Ī“
CategoryTheory.types
CategoryTheory.SimplicialObject.σ
—CategoryTheory.SimplicialObject.Ī“_comp_σ_succ
Ī“_naturality_apply šŸ“–mathematical—CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
CategoryTheory.SimplicialObject.Ī“
—CategoryTheory.SimplicialObject.Ī“_naturality
σ_comp_σ_apply šŸ“–mathematical—CategoryTheory.SimplicialObject.σ
CategoryTheory.types
—CategoryTheory.SimplicialObject.σ_comp_σ
σ_naturality_apply šŸ“–mathematical—CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
CategoryTheory.SimplicialObject.σ
—CategoryTheory.SimplicialObject.σ_naturality

SSet.Truncated

Definitions

NameCategoryTheorems
cosk šŸ“–CompOp
3 mathmath: cosk.faithful, cosk.full, cosk_reflective
largeCategory šŸ“–CompOp
88 mathmath: SSet.OneTruncationā‚‚.nerveEquiv_apply, HomotopyCategory.BinaryProduct.iso_inv_toFunctor, tensor_map_apply_snd, SSet.oneTruncationā‚‚_obj, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_map, CategoryTheory.nerve.instFullCatTruncatedOfNatNatNerveFunctorā‚‚, sk.full, HomotopyCategory.descOfTruncation_comp, SSet.instIsDiscreteHomotopyCategoryObjTruncatedOfNatNatTruncationSimplexCategoryStdSimplexMk, SSet.oneTruncationā‚‚_map, Path.mkā‚‚_arrow, HomotopyCategory.BinaryProduct.inverse_map_mkHom_id_homMk, SSet.OneTruncationā‚‚.nerveHomEquiv_id, CategoryTheory.nerve.functorOfNerveMap_map, sk_coreflective, Edge.map_fst, HomotopyCategory.BinaryProduct.functorCompInverseIso_inv_app, HomotopyCategory.BinaryProduct.functorCompInverseIso_hom_app, SSet.Edge.ofTruncated_edge, HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_fst, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_obj_obj, Edge.CompStruct.tensor_simplex_snd, HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_snd, Edge.id_tensor_id, CategoryTheory.Nerve.instIsStrictSegalObjCatTruncatedOfNatNatNerveFunctorā‚‚, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_obj, id_app, HomotopyCategory.BinaryProduct.left_unitality, Edge.CompStruct.tensor_simplex_fst, hasColimits, HomotopyCategory.BinaryProduct.inverseCompFunctorIso_inv_app, Edge.map_associator_hom, SSet.OneTruncationā‚‚.nerveEquiv_symm_apply_map, HomotopyCategory.BinaryProduct.iso_hom_toFunctor, Edge.map_whiskerLeft, HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_id, HomotopyCategory.BinaryProduct.mapHomotopyCategory_prod_id_comp_inverse, Edge.map_snd, HomotopyCategory.BinaryProduct.functor_comp_inverse, HomotopyCategory.descOfTruncation_map_homMk, HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_homMk, hoFunctorā‚‚_naturality, HomotopyCategory.BinaryProduct.inverse_comp_functor, HomotopyCategory.homToNerveMk_app_one, comp_app_assoc, Edge.map_tensorHom, HomotopyCategory.BinaryProduct.associativity'Iso_hom_app, SSet.horn.spineId_vertex_coe, tensor_map_apply_fst, HomotopyCategory.BinaryProduct.functor_obj, SSet.horn.spineId_arrow_coe, Edge.tensor_edge, cosk.faithful, SSet.Subcomplex.liftPath_arrow_coe, HomotopyCategory.BinaryProduct.square, HomotopyCategory.BinaryProduct.inverseCompFunctorIso_hom_app, HomotopyCategory.homToNerveMk_app_edge, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_map, trunc_spine, cosk.full, HomotopyCategory.BinaryProduct.associativity, SSet.OneTruncationā‚‚.nerveEquiv_symm_apply_obj, SSet.Subcomplex.liftPath_vertex_coe, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_obj_map, HomotopyCategory.BinaryProduct.right_unitality, cosk_reflective, CategoryTheory.nerve.functorOfNerveMap_nerveFunctorā‚‚_map, Path.mkā‚‚_vertex, SSet.OneTruncationā‚‚.nerveHomEquiv_apply, HomotopyCategory.BinaryProduct.associativityIso_hom_app, HomotopyCategory.homToNerveMk_app_zero, Edge.map_whiskerRight, comp_app, SSet.truncation_spine, HomotopyCategory.homToNerveMk_comp, HomotopyCategory.BinaryProduct.functor_map, CategoryTheory.nerve.functorOfNerveMap_obj, CategoryTheory.nerve.nerveFunctorā‚‚_map_functorOfNerveMap, HomotopyCategory.BinaryProduct.id_prod_mapHomotopyCategory_comp_inverse, SSet.Edge.toTruncated_id, sk.faithful, SSet.StrictSegal.instIsStrictSegalObjTruncatedHAddNatOfNatTruncationOfIsStrictSegal, HomotopyCategory.descOfTruncation_obj_mk, HomotopyCategory.BinaryProduct.inverse_obj, HomotopyCategory.homToNerveMk_comp_assoc, CategoryTheory.nerve.instFaithfulCatTruncatedOfNatNatNerveFunctorā‚‚, SSet.Edge.toTruncated_edge, hasLimits
sk šŸ“–CompOp
3 mathmath: sk.full, sk_coreflective, sk.faithful
trunc šŸ“–CompOp
7 mathmath: Path.mkā‚‚_arrow, SSet.horn.spineId_vertex_coe, SSet.horn.spineId_arrow_coe, SSet.Subcomplex.liftPath_arrow_coe, trunc_spine, SSet.Subcomplex.liftPath_vertex_coe, Path.mkā‚‚_vertex
uliftFunctor šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
comp_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
CategoryTheory.CategoryStruct.comp
SSet.Truncated
CategoryTheory.Category.toCategoryStruct
largeCategory
CategoryTheory.Functor.obj
——
comp_app_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.NatTrans.app
SSet.Truncated
largeCategory
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_app
cosk_reflective šŸ“–mathematical—CategoryTheory.IsIso
CategoryTheory.Functor
SSet.Truncated
largeCategory
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
SSet
SSet.largeCategory
cosk
SSet.truncation
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
SSet.coskAdj
—CategoryTheory.SimplicialObject.Truncated.cosk_reflective
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
hasColimits šŸ“–mathematical—CategoryTheory.Limits.HasColimits
SSet.Truncated
largeCategory
—CategoryTheory.SimplicialObject.Truncated.instHasColimits
CategoryTheory.Limits.Types.hasColimitsOfSize
UnivLE.self
hasLimits šŸ“–mathematical—CategoryTheory.Limits.HasLimits
SSet.Truncated
largeCategory
—CategoryTheory.SimplicialObject.Truncated.instHasLimits
CategoryTheory.Limits.Types.hasLimitsOfSize
UnivLE.self
hom_ext šŸ“–ā€”CategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
——CategoryTheory.NatTrans.ext
hom_ext_iff šŸ“–mathematical—CategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
—hom_ext
id_app šŸ“–mathematical—CategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
CategoryTheory.CategoryStruct.id
SSet.Truncated
CategoryTheory.Category.toCategoryStruct
largeCategory
CategoryTheory.Functor.obj
——
sk_coreflective šŸ“–mathematical—CategoryTheory.IsIso
CategoryTheory.Functor
SSet.Truncated
largeCategory
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
SSet
SSet.largeCategory
sk
SSet.truncation
CategoryTheory.Adjunction.unit
SSet.skAdj
—CategoryTheory.SimplicialObject.Truncated.sk_coreflective
CategoryTheory.Limits.Types.hasColimit
UnivLE.small
univLE_of_max
UnivLE.self

SSet.Truncated.cosk

Definitions

NameCategoryTheorems
fullyFaithful šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
faithful šŸ“–mathematical—CategoryTheory.Functor.Faithful
SSet.Truncated
SSet.Truncated.largeCategory
SSet
SSet.largeCategory
SSet.Truncated.cosk
—CategoryTheory.SimplicialObject.Truncated.cosk.faithful
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self
full šŸ“–mathematical—CategoryTheory.Functor.Full
SSet.Truncated
SSet.Truncated.largeCategory
SSet
SSet.largeCategory
SSet.Truncated.cosk
—CategoryTheory.SimplicialObject.Truncated.cosk.full
CategoryTheory.Limits.Types.hasLimit
UnivLE.small
univLE_of_max
UnivLE.self

SSet.Truncated.coskAdj

Definitions

NameCategoryTheorems
reflective šŸ“–CompOp—

SSet.Truncated.sk

Definitions

NameCategoryTheorems
fullyFaithful šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
faithful šŸ“–mathematical—CategoryTheory.Functor.Faithful
SSet.Truncated
SSet.Truncated.largeCategory
SSet
SSet.largeCategory
SSet.Truncated.sk
—CategoryTheory.SimplicialObject.Truncated.sk.faithful
CategoryTheory.Limits.Types.hasColimit
UnivLE.small
univLE_of_max
UnivLE.self
full šŸ“–mathematical—CategoryTheory.Functor.Full
SSet.Truncated
SSet.Truncated.largeCategory
SSet
SSet.largeCategory
SSet.Truncated.sk
—CategoryTheory.SimplicialObject.Truncated.sk.full
CategoryTheory.Limits.Types.hasColimit
UnivLE.small
univLE_of_max
UnivLE.self

SSet.Truncated.skAdj

Definitions

NameCategoryTheorems
coreflective šŸ“–CompOp—

(root)

Definitions

NameCategoryTheorems
SSet šŸ“–CompOp
279 mathmath: SSet.OneTruncationā‚‚.nerveEquiv_apply, SSet.Subcomplex.lift_ι, SSet.stdSimplex.mem_nonDegenerate_iff_strictMono, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_map, SSet.PtSimplex.RelStruct.Ī“_map_of_lt, SSet.Subcomplex.toRange_ι, SSet.Truncated.sk.full, SSet.ι₀_snd_assoc, SSet.Truncated.HomotopyCategory.descOfTruncation_comp, CategoryTheory.SimplicialThickening.SimplicialCategory.comp_id, SSet.modelCategoryQuillen.I_le_monomorphisms, SSet.instIsDiscreteHomotopyCategoryObjTruncatedOfNatNatTruncationSimplexCategoryStdSimplexMk, SSet.horn.faceSingletonComplIso_inv_ι_assoc, SSet.hasColimits, SSet.stdSimplex.faceSingletonIso_zero_hom_comp_ι_eq_Ī“, SSet.Subcomplex.fromPreimage_ι_assoc, SSet.Subcomplex.toSSetFunctor_map, SSet.iSup_subcomplexOfSimplex_prod_eq_top, SSet.stdSimplex.objā‚€Equiv_symm_apply, SSet.OneTruncationā‚‚.nerveHomEquiv_id, CategoryTheory.nerve.functorOfNerveMap_map, SSet.opFunctorCompOpFunctorIso_inv_app_app, SSet.modelCategoryQuillen.mono_of_cofibration, SSet.Subcomplex.range_eq_ofSimplex, SSet.PtSimplex.MulStruct.Ī“_map_of_gt, SSet.instHasDimensionLETensorUnitOfNatNat, SSet.tensorHom_app_apply, SSet.Truncated.sk_coreflective, CategoryTheory.nerveFunctor.faithful, SSet.hoFunctor.preservesTerminal', SSet.prodStdSimplex.instHasDimensionLETensorObjObjSimplexCategoryStdSimplexMkHAddNat, SSet.Subcomplex.toImage_ι, SSet.horn.yonedaEquiv_ι, SSet.Finite.instIsFinitelyPresentableObjSimplexCategoryStdSimplex, instIsLeftKanExtensionSimplexCategoryTopCatSSetToTopInvFunctorToTopSimplex, SSet.Subcomplex.topIso_inv_app_coe, SSet.prodStdSimplex.orderHomOfSimplex_coe, SSet.Subcomplex.homOfLE_refl, SSet.opFunctorCompOpFunctorIso_hom_app_app, SSet.hasDimensionLT_prod, SSet.instIsStableUnderFilteredColimitsMonomorphisms, SSet.Subcomplex.toRange_ι_assoc, SSet.RelativeMorphism.Homotopy.hā‚€_assoc, SSet.prodStdSimplex.objEquiv_apply_fst, SSet.stdSimplex.map_id, SSet.Subcomplex.lift_ι_assoc, SSet.modelCategoryQuillen.fibrations_eq, SSet.modelCategoryQuillen.cofibrations_eq, SSet.opEquivalence_inverse, SSet.instFiniteTensorUnit, SSet.Edge.ofTruncated_edge, SSet.hornā‚‚ā‚‚.sq, SSet.nonDegenerateEquivOfIso_symm_apply_coe, SSet.Subcomplex.image_id, SSet.stdSimplex.ext_iff, SSet.opFunctor_map, SSet.Subcomplex.toImage_ι_assoc, SSet.Subcomplex.topIso_inv_ι, SSet.prodStdSimplex.strictMono_orderHomOfSimplex_iff, SSet.Subcomplex.ofSimplexProd_eq_range, SSet.stdSimplex.face_eq_ofSimplex, SSet.PtSimplex.RelStruct.Ī“_castSucc_map, SSet.stdSimplex.objā‚€Equiv_apply, SSet.prodStdSimplex.objEquiv_Ī“_apply, SSet.horn.faceSingletonComplIso_inv_ι, SSet.Subcomplex.toSSetFunctor_obj, SSet.Subcomplex.instSubsingletonHomToSSetBot, SSet.instBalanced, SSet.prodStdSimplex.objEquiv_naturality, SSet.modelCategoryQuillen.instHasLiftingPropertyιHornHAddNatOfNatOfFibration, SSet.stdSimplex.spineId_arrow_apply_zero, SSet.comp_app_assoc, SSet.Subcomplex.eqToIso_hom, SSet.stdSimplex.range_Ī“, SSet.PtSimplex.RelStruct.Ī“_castSucc_map_assoc, SSet.PtSimplex.MulStruct.Ī“_succ_succ_map_assoc, SSet.id_app, SSet.instFiniteTensorObj, SSet.Augmented.stdSimplex_map_right, SSet.PtSimplex.MulStruct.Ī“_succ_succ_map, SSet.Subcomplex.homOfLE_comp_assoc, SSet.prodStdSimplex.objEquiv_apply_snd, SSet.Subcomplex.instEpiToImage, SSet.hoFunctor.unitHomEquiv_eq, SSet.Augmented.stdSimplex_obj_left, SSet.instIsStableUnderCoproductsMonomorphismsOfHasCoproductsType, SSet.stdSimplex.faceSingletonIso_zero_hom_comp_ι_eq_Ī“_assoc, SSet.instFiniteObjOppositeSimplexCategoryTensorObj, SSet.horn.spineId_map_hornInclusion, SSet.instFiniteCoprod, SSet.horn_obj, SSet.leftUnitor_inv_app_apply, SSet.ι₀_fst_assoc, SSet.ι₁_comp, SSet.Subcomplex.yonedaEquiv_coe, CategoryTheory.hoFunctor.preservesFiniteProducts, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_obj, SSet.Subcomplex.homOfLE_ι_assoc, SSet.whiskerRight_app_apply, SSet.rightUnitor_inv_app_apply, SSet.stdSimplex.face_obj, SSet.stdSimplex.nonDegenerateEquiv_apply_apply, SSet.modelCategoryQuillen.horn_ι_mem_J, SSet.stdSimplex.map_apply, SSet.ι₀_snd, SSet.PtSimplex.MulStruct.Ī“_succ_castSucc_map, CategoryTheory.hoFunctor.instIsLeftAdjointSSetCatHoFunctor, SSet.Subcomplex.image_comp, SSet.hornā‚‚ā‚€.sq, SSet.stdSimplex.mem_face_iff, SSet.hoFunctor.preservesTerminal, CategoryTheory.SimplicialThickening.functor_map, SSet.stdSimplex.faceSingletonIso_one_hom_comp_ι_eq_Ī“, SSet.instIsStableUnderCobaseChangeMonomorphisms, SSet.ι₁_snd_assoc, SSet.horn.edge_coe, SSet.modelCategoryQuillen.cofibration_of_mono, SSet.OneTruncationā‚‚.nerveEquiv_symm_apply_map, SSet.stdSimplex.isoNerve_hom_app_apply, SSet.stdSimplex.faceSingletonComplIso_hom_ι, SSet.instHasDimensionLETensorObjHAddNat, SSet.ι₁_app_fst, SSet.ι₁_snd, SSet.whiskerLeft_app_apply, SSet.comp_app, CategoryTheory.nerveFunctor_map, SSet.Subcomplex.prod_obj, SSet.comp_const, SSet.stdSimplex.instFiniteObjOppositeSimplexCategory, SSet.Truncated.HomotopyCategory.descOfTruncation_map_homMk, SSet.RelativeMorphism.comm_assoc, SSet.Subcomplex.instMonoToRange, SSet.modelCategoryQuillen.cofibration_iff, SSet.instHasDimensionLTTensorObjHAddNat, SSet.Subcomplex.homOfLE_ι, SSet.face_le_horn, CategoryTheory.hoFunctor.preservesBinaryProducts, SSet.Subcomplex.image_eq_range, SSet.RelativeMorphism.comm, SSet.PtSimplex.MulStruct.Ī“_map_of_lt, SSet.stdSimplex.instHasDimensionLEObjSimplexCategoryMk, SSet.stdSimplex.monotone_apply, SSet.horn.faceι_ι, SSet.Truncated.HomotopyCategory.homToNerveMk_app_one, SSet.prodStdSimplex.objEquiv_map_apply, SSet.stdSimplex.objEquiv_symm_mem_nonDegenerate_iff_mono, CategoryTheory.hoFunctor.isIso_prodComparison_stdSimplex, SSet.Subcomplex.homOfLE_comp, SSet.horn.edgeā‚ƒ_coe_down, CategoryTheory.SimplicialThickening.SimplicialCategory.assoc, SSet.Subcomplex.topIso_inv_ι_assoc, SSet.horn₂₁.isPushout, SSet.horn_eq_iSup, SSet.stdSimplex.objā‚€Equiv_symm_mem_face_iff, SSet.range_eq_iSup_sigma_ι, SSet.Subcomplex.BicartSq.isPushout, SSet.Subcomplex.range_comp, SSet.prodStdSimplex.instFiniteTensorObjObjSimplexCategoryStdSimplexMk, SSet.stdSimplex.objEquiv_symm_comp, SSet.Subcomplex.eqToIso_inv, SSet.Subcomplex.prod_monotone, SSet.ι₀_comp_assoc, SSet.Subcomplex.instMonoι, SSet.ι₀_comp, SSet.opEquivalence_unitIso, SSet.Augmented.stdSimplex_obj_hom_app, SSet.horn.faceι_ι_assoc, SSet.RelativeMorphism.Homotopy.h₁_assoc, CategoryTheory.nerveFunctor.full, SSet.stdSimplex.yonedaEquiv_map, SSet.RelativeMorphism.Homotopy.ofEq_h, SSet.horn_obj_zero, SSet.horn.spineId_vertex_coe, SSet.rightUnitor_hom_app_apply, SSet.horn.multicoequalizerDiagram, SSet.horn.spineId_arrow_coe, SSet.iSup_range_eq_top_of_isColimit, SSet.stdSimplex.objEquiv_toOrderHom_apply, SSet.ι₁_fst, SSet.const_comp, SSet.PtSimplex.MulStruct.Ī“_castSucc_castSucc_map_assoc, SSet.Truncated.cosk.faithful, SSet.Subcomplex.liftPath_arrow_coe, SSet.hornā‚‚ā‚€.isPushout, SSet.stdSimplex.ofSimplex_yonedaEquiv_Ī“, SSet.prodStdSimplex.nonDegenerate_iff_injective_objEquiv, SSet.Quasicategory.hornFilling, SSet.stdSimplex.instFiniteObjSimplexCategory, SSet.stdSimplex.objMk_apply, SSet.Truncated.HomotopyCategory.homToNerveMk_app_edge, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_map, SSet.RelativeMorphism.Homotopy.hā‚€, SSet.nonDegenerateEquivOfIso_apply_coe, SSet.modelCategoryQuillen.boundary_ι_mem_I, SSet.Augmented.stdSimplex_map_left, SSet.stdSimplex.faceSingletonComplIso_hom_ι_assoc, SSet.Finite.exists_epi_from_isCardinalPresentable, SSet.ι₀_fst, SSet.associator_hom_app_apply, SSet.Truncated.cosk.full, SSet.OneTruncationā‚‚.nerveEquiv_symm_apply_obj, SSet.Subcomplex.liftPath_vertex_coe, SSet.modelCategoryQuillen.J_le_monomorphisms, CategoryTheory.hoFunctor.instIsIsoCatProdComparisonSSetHoFunctorNerve, SSet.boundary_eq_iSup, SSet.RelativeMorphism.Homotopy.h₁, SSet.stdSimplex.spineId_vertex, SSet.Subcomplex.range_tensorHom, SSet.Truncated.cosk_reflective, CategoryTheory.hoFunctor.preservesBinaryProduct, CategoryTheory.nerve.functorOfNerveMap_nerveFunctorā‚‚_map, SSet.stdSimplex.face_inter_face, CategoryTheory.nerveFunctor_obj, SSet.stdSimplex.mem_nonDegenerate_iff_mono, SSet.Subcomplex.mono_homOfLE, SSet.hornā‚‚ā‚‚.isPushout, SSet.prodStdSimplex.nonDegenerate_iff_strictMono_objEquiv, SSet.yonedaEquiv_comp, SSet.stdSimplex.spineId_arrow_apply_one, SSet.Quasicategory.hornFilling', SSet.OneTruncationā‚‚.nerveHomEquiv_apply, SSet.Subcomplex.instEpiToRange, SSet.instFiniteSigmaObjOfFinite, SSet.RelativeMorphism.Homotopy.rel, SSet.horn.primitiveEdge_coe_down, SSet.stdSimplex.faceSingletonIso_one_hom_comp_ι_eq_Ī“_assoc, SSet.Subcomplex.range_eq_top_iff, SSet.Truncated.HomotopyCategory.homToNerveMk_app_zero, SSet.Subcomplex.fromPreimage_ι, SSet.stdSimplex.face_le_face_iff, SSet.Finite.instIsFinitelyPresentable, SSet.RelativeMorphism.Homotopy.refl_h, SSet.truncation_spine, SSet.PtSimplex.RelStruct.Ī“_succ_map, SSet.Truncated.HomotopyCategory.homToNerveMk_comp, CategoryTheory.SimplicialThickening.functor_id, SSet.modelCategoryQuillen.fibration_iff, SSet.hasDimensionLE_prod, SSet.ι₁_fst_assoc, SSet.hasLimits, SSet.Subcomplex.topIso_hom, SSet.Edge.toTruncated_id, SSet.horn.ι_ι_assoc, SSet.Truncated.sk.faithful, SSet.opEquivalence_counitIso, SSet.leftUnitor_hom_app_apply, SSet.stdSimplex.objEquiv_symm_apply, SSet.StrictSegal.instIsStrictSegalObjTruncatedHAddNatOfNatTruncationOfIsStrictSegal, SSet.KanComplex.hornFilling, SSet.PtSimplex.RelStruct.Ī“_map_of_gt, SSet.Truncated.HomotopyCategory.descOfTruncation_obj_mk, SSet.associator_inv_app_apply, SSet.stdSimplex.nonDegenerateEquiv_symm_apply_coe, SSet.horn.ι_ι, CategoryTheory.hoFunctor.isIso_prodComparison, CategoryTheory.SimplicialThickening.functor_obj_as, SSet.instIsRegularEpiCategory, CategoryTheory.instIsIsoSSetProdComparisonCatCompNerveFunctorHoFunctorOf, SSet.PtSimplex.MulStruct.Ī“_succ_castSucc_map_assoc, SSet.horn.const_val_apply, CategoryTheory.nerveAdjunction.isIso_counit, SSet.horn₂₁.sq, CategoryTheory.SimplicialThickening.SimplicialCategory.id_comp, SSet.instFinitePullback, SSet.Truncated.HomotopyCategory.homToNerveMk_comp_assoc, CategoryTheory.SimplicialThickening.functor_comp, SSet.horn.primitiveTriangle_coe, SSet.stdSimplex.face_singleton_compl, SSet.ι₀_app_fst, SSet.Edge.toTruncated_edge, SSet.range_eq_iSup_of_isColimit, SSet.Subcomplex.instIsIsoToRangeOfMono, SSet.ι₁_comp_assoc, SSet.PtSimplex.RelStruct.Ī“_succ_map_assoc, SSet.opEquivalence_functor, SSet.stdSimplex.isoNerve_inv_app_apply, SSet.instFiniteInitial, SSet.PtSimplex.MulStruct.Ī“_castSucc_castSucc_map, SSet.RelativeMorphism.Homotopy.rel_assoc

---

← Back to Index