Documentation Verification Report

CompStruct

πŸ“ Source: Mathlib/AlgebraicTopology/SimplicialSet/CompStruct.lean

Statistics

MetricCount
DefinitionsEdge, CompStruct, compId, idComp, map, mk, ofTruncated, simplex, toTruncated, edge, id, map, mk, mk', ofTruncated, toTruncated, CompStruct
17
TheoremscompId_simplex, dβ‚€, d₁, dβ‚‚, exists_of_simplex, ext, ext_iff, idComp_simplex, map_simplex, mk_simplex, exists_of_simplex, ext, ext_iff, id_edge, map_edge, map_id, mk'_edge, mk_edge, ofTruncated_edge, src_eq, tgt_eq, toTruncated_edge, toTruncated_id
23
Total40

SSet

Definitions

NameCategoryTheorems
Edge πŸ“–CompOp
10 mathmath: CategoryTheory.nerve.functorOfNerveMap_map, CategoryTheory.nerve.homEquiv_edgeMk_map_nerveMap, CategoryTheory.nerve.homEquiv_apply, CategoryTheory.nerve.homEquiv_edgeMk, CategoryTheory.nerve.homEquiv_comp, CategoryTheory.nerve.mk₁_homEquiv_apply, CategoryTheory.nerve.homEquiv_id, Truncated.HomotopyCategory.descOfTruncation_map_homMk, CategoryTheory.nerve.edgeMk_surjective, CategoryTheory.nerve.homEquiv_symm_apply

SSet.Edge

Definitions

NameCategoryTheorems
CompStruct πŸ“–CompOp
1 mathmath: CategoryTheory.nerve.nonempty_compStruct_iff
edge πŸ“–CompOp
20 mathmath: CategoryTheory.nerve.edgeMk_edge, CompStruct.dβ‚€, tgt_eq, CategoryTheory.nerve.homEquiv_apply, ofTruncated_edge, CategoryTheory.nerve.right_edge, mk_edge, ext_iff, CategoryTheory.nerve.left_edge, CategoryTheory.nerve.mk₁_homEquiv_apply, exists_of_simplex, mk'_edge, CompStruct.idComp_simplex, CompStruct.dβ‚‚, CompStruct.d₁, map_edge, CompStruct.compId_simplex, toTruncated_edge, id_edge, src_eq
id πŸ“–CompOp
7 mathmath: map_id, CategoryTheory.nerve.edgeMk_id, CompStruct.idComp_simplex, CategoryTheory.nerve.homEquiv_id, CompStruct.compId_simplex, toTruncated_id, id_edge
map πŸ“–CompOp
4 mathmath: map_id, CategoryTheory.nerve.homEquiv_edgeMk_map_nerveMap, map_edge, CompStruct.map_simplex
mk πŸ“–CompOpβ€”
mk' πŸ“–CompOp
1 mathmath: mk'_edge
ofTruncated πŸ“–CompOp
1 mathmath: ofTruncated_edge
toTruncated πŸ“–CompOp
3 mathmath: CategoryTheory.nerve.functorOfNerveMap_map, toTruncated_id, toTruncated_edge

Theorems

NameKindAssumesProvesValidatesDepends On
exists_of_simplex πŸ“–mathematicalβ€”edgeβ€”β€”
ext πŸ“–β€”edgeβ€”β€”SSet.Truncated.Edge.ext
ext_iff πŸ“–mathematicalβ€”edgeβ€”ext
id_edge πŸ“–mathematicalβ€”edge
id
CategoryTheory.SimplicialObject.Οƒ
CategoryTheory.types
β€”β€”
map_edge πŸ“–mathematicalβ€”edge
CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
map
β€”β€”
map_id πŸ“–mathematicalβ€”map
id
CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
β€”SSet.Truncated.Edge.map_id
mk'_edge πŸ“–mathematicalβ€”edge
CategoryTheory.SimplicialObject.Ξ΄
CategoryTheory.types
mk'
β€”β€”
mk_edge πŸ“–mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
CategoryTheory.SimplicialObject.Ξ΄
edgeβ€”β€”
ofTruncated_edge πŸ“–mathematicalβ€”edge
ofTruncated
SSet.Truncated.Edge.edge
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.Truncated
SSet.Truncated.largeCategory
SSet.truncation
β€”β€”
src_eq πŸ“–mathematicalβ€”CategoryTheory.SimplicialObject.Ξ΄
CategoryTheory.types
edge
β€”SSet.Truncated.Edge.src_eq
tgt_eq πŸ“–mathematicalβ€”CategoryTheory.SimplicialObject.Ξ΄
CategoryTheory.types
edge
β€”SSet.Truncated.Edge.tgt_eq
toTruncated_edge πŸ“–mathematicalβ€”SSet.Truncated.Edge.edge
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.Truncated
SSet.Truncated.largeCategory
SSet.truncation
toTruncated
edge
β€”β€”
toTruncated_id πŸ“–mathematicalβ€”toTruncated
id
SSet.Truncated.Edge.id
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.Truncated
SSet.Truncated.largeCategory
SSet.truncation
β€”β€”

SSet.Edge.CompStruct

Definitions

NameCategoryTheorems
compId πŸ“–CompOp
1 mathmath: compId_simplex
idComp πŸ“–CompOp
1 mathmath: idComp_simplex
map πŸ“–CompOp
1 mathmath: map_simplex
mk πŸ“–CompOpβ€”
ofTruncated πŸ“–CompOpβ€”
simplex πŸ“–CompOp
9 mathmath: dβ‚€, exists_of_simplex, ext_iff, idComp_simplex, dβ‚‚, d₁, map_simplex, compId_simplex, mk_simplex
toTruncated πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
compId_simplex πŸ“–mathematicalβ€”simplex
SSet.Edge.id
compId
CategoryTheory.SimplicialObject.Οƒ
CategoryTheory.types
SSet.Edge.edge
β€”β€”
dβ‚€ πŸ“–mathematicalβ€”CategoryTheory.SimplicialObject.Ξ΄
CategoryTheory.types
simplex
SSet.Edge.edge
β€”SSet.Truncated.Edge.CompStruct.dβ‚€
d₁ πŸ“–mathematicalβ€”CategoryTheory.SimplicialObject.Ξ΄
CategoryTheory.types
simplex
SSet.Edge.edge
β€”SSet.Truncated.Edge.CompStruct.d₁
dβ‚‚ πŸ“–mathematicalβ€”CategoryTheory.SimplicialObject.Ξ΄
CategoryTheory.types
simplex
SSet.Edge.edge
β€”SSet.Truncated.Edge.CompStruct.dβ‚‚
exists_of_simplex πŸ“–mathematicalβ€”simplexβ€”SSet.Truncated.Edge.CompStruct.exists_of_simplex
ext πŸ“–β€”simplexβ€”β€”SSet.Truncated.Edge.CompStruct.ext
ext_iff πŸ“–mathematicalβ€”simplexβ€”ext
idComp_simplex πŸ“–mathematicalβ€”simplex
SSet.Edge.id
idComp
CategoryTheory.SimplicialObject.Οƒ
CategoryTheory.types
SSet.Edge.edge
β€”β€”
map_simplex πŸ“–mathematicalβ€”simplex
CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
SSet.Edge.map
map
β€”β€”
mk_simplex πŸ“–mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
CategoryTheory.SimplicialObject.Ξ΄
SSet.Edge.edge
simplexβ€”β€”

SSet.Truncated.Edge

Definitions

NameCategoryTheorems
CompStruct πŸ“–CompData
4 mathmath: SSet.Truncated.Quasicategoryβ‚‚.fill32, SSet.Truncated.Quasicategoryβ‚‚.fill21, CompStruct.nonempty_iff, SSet.Truncated.Quasicategoryβ‚‚.fill31

---

← Back to Index