Documentation Verification Report

Coskeletal

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/Coskeletal.lean

Statistics

MetricCount
Definitionscosk₂Iso, nerveFunctor₂, isPointwiseRightKanExtension, isPointwiseRightKanExtensionAt, strArrowMk₂, rightExtensionInclusion
6
TheoremsinstIsCoskeletalNerveOfNatNat, instIsStrictSegalObjCatTruncatedOfNatNatNerveFunctor₂, isCoskeletal, isCoskeletal', fac_aux₁, fac_aux₂, fac_aux₃, isRightKanExtension, rightExtensionInclusion_hom_app, rightExtensionInclusion_left, rightExtensionInclusion_right_as
11
Total17

CategoryTheory.Nerve

Definitions

NameCategoryTheorems
cosk₂Iso 📖CompOp—
nerveFunctor₂ 📖CompOp
11 mathmath: SSet.OneTruncation₂.ofNerve₂.natIso_hom_app_map, CategoryTheory.nerve.instFullCatTruncatedOfNatNatNerveFunctor₂, CategoryTheory.nerve.functorOfNerveMap_map, SSet.OneTruncation₂.ofNerve₂.natIso_inv_app_obj_obj, instIsStrictSegalObjCatTruncatedOfNatNatNerveFunctor₂, SSet.OneTruncation₂.ofNerve₂.natIso_hom_app_obj, SSet.OneTruncation₂.ofNerve₂.natIso_inv_app_map, SSet.OneTruncation₂.ofNerve₂.natIso_inv_app_obj_map, CategoryTheory.nerve.functorOfNerveMap_obj, CategoryTheory.nerve.nerveFunctor₂_map_functorOfNerveMap, CategoryTheory.nerve.instFaithfulCatTruncatedOfNatNatNerveFunctor₂

Theorems

NameKindAssumesProvesValidatesDepends On
instIsCoskeletalNerveOfNatNat 📖mathematical—CategoryTheory.SimplicialObject.IsCoskeletal
CategoryTheory.types
CategoryTheory.nerve
—SSet.StrictSegal.isCoskeletal'
isStrictSegal
instIsStrictSegalObjCatTruncatedOfNatNatNerveFunctor₂ 📖mathematical—SSet.Truncated.IsStrictSegal
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
SSet.Truncated
SSet.Truncated.largeCategory
nerveFunctor₂
—SSet.StrictSegal.instIsStrictSegalObjTruncatedHAddNatOfNatTruncationOfIsStrictSegal
isStrictSegal

SSet.StrictSegal

Definitions

NameCategoryTheorems
isPointwiseRightKanExtension 📖CompOp—
isPointwiseRightKanExtensionAt 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
isCoskeletal 📖mathematical—CategoryTheory.SimplicialObject.IsCoskeletal
CategoryTheory.types
—isRightKanExtension
isCoskeletal' 📖mathematical—CategoryTheory.SimplicialObject.IsCoskeletal
CategoryTheory.types
—isCoskeletal
isRightKanExtension 📖mathematical—CategoryTheory.Functor.IsRightKanExtension
Opposite
SimplexCategory.Truncated
SimplexCategory
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.Functor.comp
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
—CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.isRightKanExtension

SSet.StrictSegal.isPointwiseRightKanExtensionAt

Definitions

NameCategoryTheorems
strArrowMk₂ 📖CompOp
3 mathmath: fac_aux₂, fac_aux₃, fac_aux₁

Theorems

NameKindAssumesProvesValidatesDepends On
fac_aux₁ 📖mathematical—CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.mkOfSucc
lift
CategoryTheory.NatTrans.app
CategoryTheory.StructuredArrow
SimplexCategory.Truncated
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow.proj
CategoryTheory.Limits.Cone.π
strArrowMk₂
—Fin.castSucc_le_succ
SSet.StrictSegal.spineToSimplex_arrow
fac_aux₂ 📖mathematical—CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.mkOfLe
lift
CategoryTheory.NatTrans.app
CategoryTheory.StructuredArrow
SimplexCategory.Truncated
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow.proj
CategoryTheory.Limits.Cone.π
strArrowMk₂
—le_refl
SimplexCategory.Hom.ext_one_left
CategoryTheory.NatTrans.naturality
CategoryTheory.op_comp
CategoryTheory.Functor.map_comp
Fin.castSucc_le_succ
lift.eq_1
SSet.StrictSegal.spineToSimplex_vertex
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
SimplexCategory.Hom.ext
OrderHom.ext
Fintype.complete
fac_aux₁
SSet.StrictSegal.spineInjective
SSet.Path.ext'
SSet.StrictSegal.spineToSimplex_spine_apply
SSet.StrictSegal.spine_spineToSimplex_apply
SSet.spine_arrow
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.Limits.Cone.w
CategoryTheory.StructuredArrow.w
fac_aux₃ 📖mathematical—CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
lift
CategoryTheory.NatTrans.app
CategoryTheory.StructuredArrow
SimplexCategory.Truncated
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.len
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.comp
CategoryTheory.StructuredArrow.proj
CategoryTheory.Limits.Cone.π
strArrowMk₂
—OrderHom.monotone
SimplexCategory.Hom.ext_one_left
fac_aux₂

SSet.Truncated

Definitions

NameCategoryTheorems
rightExtensionInclusion 📖CompOp
3 mathmath: rightExtensionInclusion_right_as, rightExtensionInclusion_left, rightExtensionInclusion_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
rightExtensionInclusion_hom_app 📖mathematical—CategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.Comma.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.fromPUnit
rightExtensionInclusion
——
rightExtensionInclusion_left 📖mathematical—CategoryTheory.Comma.left
CategoryTheory.Functor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
SimplexCategory.Truncated
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.len
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
rightExtensionInclusion
——
rightExtensionInclusion_right_as 📖mathematical—CategoryTheory.Discrete.as
CategoryTheory.Comma.right
CategoryTheory.Functor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
SimplexCategory.Truncated
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.len
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.comp
rightExtensionInclusion
——

---

← Back to Index