Documentation Verification Report

Degenerate

πŸ“ Source: Mathlib/AlgebraicTopology/SimplicialSet/Degenerate.lean

Statistics

MetricCount
Definitionsdegenerate, nonDegenerate, nonDegenerateEquivOfIso
3
Theoremsdegenerate_eq_top_iff, eq_top_iff_contains_nonDegenerate, iSup_ofSimplex_nonDegenerate_eq_top, le_iff_contains_nonDegenerate, mem_degenerate_iff, mem_nonDegenerate_iff, degenerate_app_apply, degenerate_eq_iUnion_range_Οƒ, degenerate_iff_of_isIso, degenerate_iff_of_mono, degenerate_le_preimage, degenerate_zero, exists_nonDegenerate, image_degenerate_le, isIso_of_nonDegenerate, mem_degenerate_iff, mem_degenerate_iff_notMem_nonDegenerate, mem_nonDegenerate_iff_notMem_degenerate, mono_of_nonDegenerate, nonDegenerateEquivOfIso_apply_coe, nonDegenerateEquivOfIso_symm_apply_coe, nonDegenerate_iff_of_isIso, nonDegenerate_iff_of_mono, nondegenerate_zero, unique_nonDegenerate_dim, unique_nonDegenerate_map, unique_nonDegenerate_simplex, Οƒ_mem_degenerate
28
Total31

SSet

Definitions

NameCategoryTheorems
degenerate πŸ“–CompOp
16 mathmath: degenerate_eq_top_of_hasDimensionLT, degenerate_iff_of_mono, Οƒ_mem_degenerate, Subcomplex.degenerate_eq_top_iff, mem_degenerate_iff_notMem_nonDegenerate, PartialOrder.mem_nerve_degenerate_of_eq, hasDimensionLT_iff, degenerate_le_preimage, degenerate_zero, Subcomplex.mem_degenerate_iff, mem_nonDegenerate_iff_notMem_degenerate, HasDimensionLT.degenerate_eq_top, mem_degenerate_iff, image_degenerate_le, degenerate_eq_iUnion_range_Οƒ, degenerate_iff_of_isIso
nonDegenerate πŸ“–CompOp
33 mathmath: stdSimplex.mem_nonDegenerate_iff_strictMono, nonDegenerate_iff_of_mono, exists_nonDegenerate, nonDegenerateEquivOfIso_symm_apply_coe, Subcomplex.eq_top_iff_of_hasDimensionLT, mem_degenerate_iff_notMem_nonDegenerate, nonDegenerate_eq_bot_of_hasDimensionLT, Subcomplex.eq_top_iff_contains_nonDegenerate, instFiniteElemObjOppositeSimplexCategoryOpMkNonDegenerateOfFinite, PartialOrder.mem_nerve_nonDegenerate_iff_injective, stdSimplex.nonDegenerateEquiv_apply_apply, Subcomplex.mem_nonDegenerate_iff, mem_skeleton_obj_iff_of_nonDegenerate, skeleton_succ, Subcomplex.iSup_ofSimplex_nonDegenerate_eq_top, PartialOrder.mem_nerve_nonDegenerate_iff_strictMono, Subcomplex.le_iff_of_hasDimensionLT, stdSimplex.objEquiv_symm_mem_nonDegenerate_iff_mono, nonDegenerate_iff_of_isIso, Subcomplex.PairingCore.nonDegenerateβ‚‚, Subcomplex.le_iff_contains_nonDegenerate, mem_nonDegenerate_iff_notMem_degenerate, mem_skeletonOfMono_obj_iff_of_nonDegenerate, prodStdSimplex.nonDegenerate_iff_injective_objEquiv, N.mk_surjective, nonDegenerateEquivOfIso_apply_coe, stdSimplex.mem_nonDegenerate_iff_mono, N.nonDegenerate, prodStdSimplex.nonDegenerate_iff_strictMono_objEquiv, Subcomplex.PairingCore.nonDegenerate₁, nondegenerate_zero, stdSimplex.nonDegenerateEquiv_symm_apply_coe, skeletonOfMono_succ
nonDegenerateEquivOfIso πŸ“–CompOp
2 mathmath: nonDegenerateEquivOfIso_symm_apply_coe, nonDegenerateEquivOfIso_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
degenerate_app_apply πŸ“–mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
degenerate
CategoryTheory.NatTrans.appβ€”CategoryTheory.FunctorToTypes.naturality
degenerate_eq_iUnion_range_Οƒ πŸ“–mathematicalβ€”degenerate
Set.iUnion
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set.range
CategoryTheory.SimplicialObject.Οƒ
β€”Set.ext
mem_degenerate_iff
SimplexCategory.eq_Οƒ_comp_of_not_injective
SimplexCategory.le_of_mono
SimplexCategory.mono_iff_injective
CategoryTheory.FunctorToTypes.map_comp_apply
Οƒ_mem_degenerate
degenerate_iff_of_isIso πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
degenerate
CategoryTheory.NatTrans.app
β€”CategoryTheory.IsIso.hom_inv_id
degenerate_app_apply
degenerate_iff_of_mono πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
degenerate
CategoryTheory.NatTrans.app
β€”degenerate_iff_of_isIso
Subcomplex.instIsIsoToRangeOfMono
Subcomplex.mem_degenerate_iff
degenerate_le_preimage πŸ“–mathematicalβ€”Set
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set.instHasSubset
degenerate
Set.preimage
CategoryTheory.NatTrans.app
β€”degenerate_app_apply
degenerate_zero πŸ“–mathematicalβ€”degenerate
Set
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set.instEmptyCollection
β€”Set.ext
Nat.instCanonicallyOrderedAdd
exists_nonDegenerate πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Set
Set.instMembership
nonDegenerate
β€”CategoryTheory.instEpiId
nondegenerate_zero
CategoryTheory.FunctorToTypes.map_id_apply
degenerate_eq_iUnion_range_Οƒ
CategoryTheory.epi_comp
SimplexCategory.instEpiσ
CategoryTheory.FunctorToTypes.map_comp_apply
image_degenerate_le πŸ“–mathematicalβ€”Set
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set.instHasSubset
Set.image
CategoryTheory.NatTrans.app
degenerate
β€”degenerate_le_preimage
isIso_of_nonDegenerate πŸ“–mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Set
Set.instMembership
nonDegenerate
CategoryTheory.IsIsoβ€”mem_nonDegenerate_iff_notMem_degenerate
not_le
SimplexCategory.isIso_iff_of_epi
le_antisymm
SimplexCategory.len_le_of_epi
mem_degenerate_iff πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
degenerate
Set.range
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
SimplexCategory.instHasStrongEpiMonoFactorisations
SimplexCategory.len_le_of_mono
CategoryTheory.Limits.instMonoΞΉ
SimplexCategory.instEpiFactorThruImage
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
CategoryTheory.Limits.image.fac
mem_degenerate_iff_notMem_nonDegenerate πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
degenerate
nonDegenerate
β€”β€”
mem_nonDegenerate_iff_notMem_degenerate πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
nonDegenerate
degenerate
β€”β€”
mono_of_nonDegenerate πŸ“–mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Set
Set.instMembership
nonDegenerate
CategoryTheory.Monoβ€”CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
SimplexCategory.instHasStrongEpiMonoFactorisations
isIso_of_nonDegenerate
SimplexCategory.instEpiFactorThruImage
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
CategoryTheory.Limits.image.fac
CategoryTheory.mono_comp
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Limits.instMonoΞΉ
nonDegenerateEquivOfIso_apply_coe πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
nonDegenerate
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
nonDegenerateEquivOfIso
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
SSet
largeCategory
β€”β€”
nonDegenerateEquivOfIso_symm_apply_coe πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
nonDegenerate
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
nonDegenerateEquivOfIso
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
SSet
largeCategory
β€”β€”
nonDegenerate_iff_of_isIso πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
nonDegenerate
CategoryTheory.NatTrans.app
β€”β€”
nonDegenerate_iff_of_mono πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
nonDegenerate
CategoryTheory.NatTrans.app
β€”β€”
nondegenerate_zero πŸ“–mathematicalβ€”nonDegenerate
Set.univ
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
β€”degenerate_zero
Set.compl_empty
unique_nonDegenerate_dim πŸ“–β€”CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Set
Set.instMembership
nonDegenerate
β€”β€”CategoryTheory.isSplitEpi_of_epi
SimplexCategory.instSplitEpiCategory
le_antisymm
unique_nonDegenerate_map πŸ“–β€”CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Set
Set.instMembership
nonDegenerate
β€”β€”SimplexCategory.Hom.ext
OrderHom.ext
CategoryTheory.isSplitEpi_of_epi
SimplexCategory.instSplitEpiCategory
SimplexCategory.congr_toOrderHom_apply
CategoryTheory.SplitEpi.id
OrderHom.monotone
LT.lt.le
unique_nonDegenerate_simplex πŸ“–β€”CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Set
Set.instMembership
nonDegenerate
β€”β€”CategoryTheory.isSplitEpi_of_epi
SimplexCategory.instSplitEpiCategory
CategoryTheory.FunctorToTypes.map_id_apply
Οƒ_mem_degenerate πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
degenerate
CategoryTheory.SimplicialObject.Οƒ
β€”Set.mem_range_self

SSet.Subcomplex

Theorems

NameKindAssumesProvesValidatesDepends On
degenerate_eq_top_iff πŸ“–mathematicalβ€”SSet.degenerate
toSSet
Top.top
Set
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
BooleanAlgebra.toTop
Set.instBooleanAlgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
CategoryTheory.Subfunctor.obj
β€”Set.ext
mem_degenerate_iff
Subtype.prop
eq_top_iff_contains_nonDegenerate πŸ“–mathematicalβ€”Top.top
SSet.Subcomplex
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set
CategoryTheory.Functor.obj
CategoryTheory.types
Opposite.op
Set.instHasSubset
SSet.nonDegenerate
CategoryTheory.Subfunctor.obj
β€”le_iff_contains_nonDegenerate
iSup_ofSimplex_nonDegenerate_eq_top πŸ“–mathematicalβ€”iSup
SSet.Subcomplex
Set.Elem
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
SSet.nonDegenerate
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
ofSimplex
Set
Set.instMembership
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”eq_top_iff_contains_nonDegenerate
CategoryTheory.Subfunctor.iSup_obj
mem_ofSimplex_obj
le_iff_contains_nonDegenerate πŸ“–mathematicalβ€”SSet.Subcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
SSet.nonDegenerate
β€”SSet.exists_nonDegenerate
CategoryTheory.Subfunctor.map
mem_nonDegenerate_iff
Subtype.prop
mem_degenerate_iff πŸ“–mathematicalβ€”Set.Elem
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
CategoryTheory.Subfunctor.obj
Set
toSSet
Set.instMembership
SSet.degenerate
β€”SSet.mem_degenerate_iff
CategoryTheory.isSplitEpi_of_epi
SimplexCategory.instSplitEpiCategory
CategoryTheory.IsSplitEpi.id
CategoryTheory.FunctorToTypes.map_id_apply
CategoryTheory.Subfunctor.map
mem_nonDegenerate_iff πŸ“–mathematicalβ€”Set.Elem
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
CategoryTheory.Subfunctor.obj
Set
toSSet
Set.instMembership
SSet.nonDegenerate
β€”SSet.mem_nonDegenerate_iff_notMem_degenerate
mem_degenerate_iff

---

← Back to Index