π Source: Mathlib/AlgebraicTopology/SimplicialSet/Degenerate.lean
degenerate
nonDegenerate
nonDegenerateEquivOfIso
degenerate_eq_top_iff
eq_top_iff_contains_nonDegenerate
iSup_ofSimplex_nonDegenerate_eq_top
le_iff_contains_nonDegenerate
mem_degenerate_iff
mem_nonDegenerate_iff
degenerate_app_apply
degenerate_eq_iUnion_range_Ο
degenerate_iff_of_isIso
degenerate_iff_of_mono
degenerate_le_preimage
degenerate_zero
exists_nonDegenerate
image_degenerate_le
isIso_of_nonDegenerate
mem_degenerate_iff_notMem_nonDegenerate
mem_nonDegenerate_iff_notMem_degenerate
mono_of_nonDegenerate
nonDegenerateEquivOfIso_apply_coe
nonDegenerateEquivOfIso_symm_apply_coe
nonDegenerate_iff_of_isIso
nonDegenerate_iff_of_mono
nondegenerate_zero
unique_nonDegenerate_dim
unique_nonDegenerate_map
unique_nonDegenerate_simplex
Ο_mem_degenerate
degenerate_eq_top_of_hasDimensionLT
Subcomplex.degenerate_eq_top_iff
PartialOrder.mem_nerve_degenerate_of_eq
hasDimensionLT_iff
Subcomplex.mem_degenerate_iff
HasDimensionLT.degenerate_eq_top
stdSimplex.mem_nonDegenerate_iff_strictMono
Subcomplex.eq_top_iff_of_hasDimensionLT
nonDegenerate_eq_bot_of_hasDimensionLT
Subcomplex.eq_top_iff_contains_nonDegenerate
instFiniteElemObjOppositeSimplexCategoryOpMkNonDegenerateOfFinite
PartialOrder.mem_nerve_nonDegenerate_iff_injective
stdSimplex.nonDegenerateEquiv_apply_apply
Subcomplex.mem_nonDegenerate_iff
mem_skeleton_obj_iff_of_nonDegenerate
skeleton_succ
Subcomplex.iSup_ofSimplex_nonDegenerate_eq_top
PartialOrder.mem_nerve_nonDegenerate_iff_strictMono
Subcomplex.le_iff_of_hasDimensionLT
stdSimplex.objEquiv_symm_mem_nonDegenerate_iff_mono
Subcomplex.PairingCore.nonDegenerateβ
Subcomplex.le_iff_contains_nonDegenerate
mem_skeletonOfMono_obj_iff_of_nonDegenerate
prodStdSimplex.nonDegenerate_iff_injective_objEquiv
N.mk_surjective
stdSimplex.mem_nonDegenerate_iff_mono
N.nonDegenerate
prodStdSimplex.nonDegenerate_iff_strictMono_objEquiv
Subcomplex.PairingCore.nonDegenerateβ
stdSimplex.nonDegenerateEquiv_symm_apply_coe
skeletonOfMono_succ
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.NatTrans.app
CategoryTheory.FunctorToTypes.naturality
Set.iUnion
Set.range
CategoryTheory.SimplicialObject.Ο
Set.ext
SimplexCategory.eq_Ο_comp_of_not_injective
SimplexCategory.le_of_mono
SimplexCategory.mono_iff_injective
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.IsIso.hom_inv_id
Subcomplex.instIsIsoToRangeOfMono
Set.instHasSubset
Set.preimage
Set.instEmptyCollection
Nat.instCanonicallyOrderedAdd
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instEpiId
CategoryTheory.FunctorToTypes.map_id_apply
CategoryTheory.epi_comp
SimplexCategory.instEpiΟ
Set.image
CategoryTheory.IsIso
not_le
SimplexCategory.isIso_iff_of_epi
le_antisymm
SimplexCategory.len_le_of_epi
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
SimplexCategory.instHasStrongEpiMonoFactorisations
SimplexCategory.len_le_of_mono
CategoryTheory.Limits.instMonoΞΉ
SimplexCategory.instEpiFactorThruImage
CategoryTheory.op_comp
CategoryTheory.Limits.image.fac
CategoryTheory.Mono
CategoryTheory.mono_comp
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Iso.hom
SSet
largeCategory
Equiv.symm
CategoryTheory.Iso.inv
Set.univ
Set.compl_empty
CategoryTheory.isSplitEpi_of_epi
SimplexCategory.instSplitEpiCategory
SimplexCategory.Hom.ext
OrderHom.ext
SimplexCategory.congr_toOrderHom_apply
CategoryTheory.SplitEpi.id
OrderHom.monotone
LT.lt.le
Set.mem_range_self
SSet.degenerate
toSSet
Top.top
BooleanAlgebra.toTop
Set.instBooleanAlgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
CategoryTheory.Subfunctor.obj
Subtype.prop
SSet.Subcomplex
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
SSet.nonDegenerate
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ofSimplex
CategoryTheory.Subfunctor.iSup_obj
mem_ofSimplex_obj
CategoryTheory.instPartialOrderSubfunctor
SSet.exists_nonDegenerate
CategoryTheory.Subfunctor.map
SSet.mem_degenerate_iff
CategoryTheory.IsSplitEpi.id
SSet.mem_nonDegenerate_iff_notMem_degenerate
---
β Back to Index