Documentation Verification Report

Dimension

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/Dimension.lean

Statistics

MetricCount
DefinitionsHasDimensionLE, HasDimensionLT
2
Theoremsdegenerate_eq_top, eq_top_iff_of_hasDimensionLT, hasDimensionLT_of_le, instHasDimensionLTToSSet, le_iff_of_hasDimensionLT, degenerate_eq_top_of_hasDimensionLT, dim_le_of_nonDegenerate, dim_lt_of_nonDegenerate, hasDimensionLT_iSup_iff, hasDimensionLT_iff, hasDimensionLT_iff_of_iso, hasDimensionLT_of_epi, hasDimensionLT_of_le, hasDimensionLT_of_mono, hasDimensionLT_subcomplex_top_iff, instHasDimensionLTHAddNat, instHasDimensionLTToSSetBotSubcomplex, instHasDimensionLTToSSetRange, nonDegenerate_eq_bot_of_hasDimensionLT
19
Total21

SSet

Definitions

NameCategoryTheorems
HasDimensionLE 📖MathDef
5 mathmath: instHasDimensionLETensorUnitOfNatNat, prodStdSimplex.instHasDimensionLETensorObjObjSimplexCategoryStdSimplexMkHAddNat, instHasDimensionLETensorObjHAddNat, stdSimplex.instHasDimensionLEObjSimplexCategoryMk, hasDimensionLE_prod
HasDimensionLT 📖CompData
15 mathmath: instHasDimensionLTToSSetRange, hasDimensionLT_of_epi, hasDimensionLT_prod, Subcomplex.hasDimensionLT_of_le, Subcomplex.instHasDimensionLTToSSet, hasDimensionLT_subcomplex_top_iff, hasDimensionLT_iff, instHasDimensionLTToSSetBotSubcomplex, hasDimensionLT_of_finite, hasDimensionLT_of_le, instHasDimensionLTTensorObjHAddNat, instHasDimensionLTHAddNat, hasDimensionLT_iSup_iff, hasDimensionLT_iff_of_iso, hasDimensionLT_of_mono

Theorems

NameKindAssumesProvesValidatesDepends On
degenerate_eq_top_of_hasDimensionLT 📖mathematicaldegenerate
Top.top
Set
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
BooleanAlgebra.toTop
Set.instBooleanAlgebra
HasDimensionLT.degenerate_eq_top
dim_le_of_nonDegenerate 📖dim_lt_of_nonDegenerate
dim_lt_of_nonDegenerate 📖nonDegenerate_eq_bot_of_hasDimensionLT
hasDimensionLT_iSup_iff 📖mathematicalHasDimensionLT
Subcomplex.toSSet
iSup
Subcomplex
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Subfunctor.iSup_obj
hasDimensionLT_iff 📖mathematicalHasDimensionLT
degenerate
Top.top
Set
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
BooleanAlgebra.toTop
Set.instBooleanAlgebra
hasDimensionLT_iff_of_iso 📖mathematicalHasDimensionLThasDimensionLT_of_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.isIso_inv
hasDimensionLT_of_epi 📖mathematicalHasDimensionLTSet.ext
CategoryTheory.epi_iff_surjective
CategoryTheory.instEpiAppOfFunctor
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CategoryTheory.Limits.Types.hasColimitsOfSize
UnivLE.self
degenerate_app_apply
degenerate_eq_top_of_hasDimensionLT
hasDimensionLT_of_le 📖mathematicalHasDimensionLTdegenerate_eq_top_of_hasDimensionLT
LE.le.trans
hasDimensionLT_of_mono 📖mathematicalHasDimensionLTSet.ext
degenerate_iff_of_isIso
Subcomplex.instIsIsoToRangeOfMono
Subcomplex.mem_degenerate_iff
degenerate_eq_top_of_hasDimensionLT
hasDimensionLT_subcomplex_top_iff 📖mathematicalHasDimensionLT
Subcomplex.toSSet
Top.top
Subcomplex
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
hasDimensionLT_iff_of_iso
instHasDimensionLTHAddNat 📖mathematicalHasDimensionLThasDimensionLT_of_le
instHasDimensionLTToSSetBotSubcomplex 📖mathematicalHasDimensionLT
Subcomplex.toSSet
Bot.bot
Subcomplex
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Set.ext
instHasDimensionLTToSSetRange 📖mathematicalHasDimensionLT
Subcomplex.toSSet
Subcomplex.range
hasDimensionLT_of_epi
Subcomplex.instEpiToRange
nonDegenerate_eq_bot_of_hasDimensionLT 📖mathematicalnonDegenerate
Bot.bot
Set
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
BooleanAlgebra.toBot
Set.instBooleanAlgebra
degenerate_eq_top_of_hasDimensionLT
Set.compl_univ

SSet.HasDimensionLT

Theorems

NameKindAssumesProvesValidatesDepends On
degenerate_eq_top 📖mathematicalSSet.degenerate
Top.top
Set
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
BooleanAlgebra.toTop
Set.instBooleanAlgebra

SSet.Subcomplex

Theorems

NameKindAssumesProvesValidatesDepends On
eq_top_iff_of_hasDimensionLT 📖mathematicalTop.top
SSet.Subcomplex
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set
CategoryTheory.Functor.obj
CategoryTheory.types
Opposite.op
Set.instHasSubset
SSet.nonDegenerate
CategoryTheory.Subfunctor.obj
le_iff_of_hasDimensionLT
Set.univ_inter
hasDimensionLT_of_le 📖mathematicalSSet.Subcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
SSet.HasDimensionLT
toSSet
SSet.hasDimensionLT_of_mono
mono_homOfLE
instHasDimensionLTToSSet 📖mathematicalSSet.HasDimensionLT
toSSet
Set.ext
mem_degenerate_iff
SSet.degenerate_eq_top_of_hasDimensionLT
le_iff_of_hasDimensionLT 📖mathematicalSSet.Subcomplex
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Set
CategoryTheory.Functor.obj
CategoryTheory.types
Opposite.op
Set.instHasSubset
Set.instInter
CategoryTheory.Subfunctor.obj
SSet.nonDegenerate
le_iff_contains_nonDegenerate
SSet.dim_lt_of_nonDegenerate
Subtype.prop

---

← Back to Index