Documentation Verification Report

Finite

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/Finite.lean

Statistics

MetricCount
Definitions0
Theoremsfinite, finite_iSup_iff, finite_iff_of_iso, finite_of_epi, finite_of_hasDimensionLT, finite_of_iso, finite_of_mono, finite_range, finite_subcomplex_top_iff, hasDimensionLT_of_finite, instFiniteElemObjOppositeSimplexCategoryOpMkNonDegenerateOfFinite, instFiniteObjOppositeSimplexCategoryOfFinite, instFiniteToSSet
13
Total13

SSet

Theorems

NameKindAssumesProvesValidatesDepends On
finite_iSup_iff 📖mathematicalFinite
Subcomplex.toSSet
iSup
Subcomplex
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
finite_of_mono
le_iSup
Subcomplex.mono_homOfLE
Finite.of_surjective
Finite.instSigma
Finite.finite
N.nonDegenerate
Subtype.prop
N.mk_surjective
CategoryTheory.Subfunctor.iSup_obj
Subcomplex.mem_nonDegenerate_iff
finite_iff_of_iso 📖mathematicalFinitefinite_of_iso
finite_of_epi 📖mathematicalFinitehasDimensionLT_of_finite
hasDimensionLT_of_epi
finite_of_hasDimensionLT
Finite.of_surjective
instFiniteObjOppositeSimplexCategoryOfFinite
CategoryTheory.NatTrans.epi_iff_epi_app
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CategoryTheory.Limits.Types.hasColimitsOfSize
UnivLE.self
Subtype.finite
finite_of_hasDimensionLT 📖mathematicalFinite
Set.Elem
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
nonDegenerate
FiniteFinite.of_surjective
Finite.instSigma
Finite.of_fintype
N.nonDegenerate
nonDegenerate_eq_bot_of_hasDimensionLT
finite_of_iso 📖mathematicalFinitefinite_of_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_inv
finite_of_mono 📖mathematicalFinitehasDimensionLT_of_finite
hasDimensionLT_of_mono
finite_of_hasDimensionLT
Finite.of_injective
instFiniteObjOppositeSimplexCategoryOfFinite
CategoryTheory.injective_of_mono
CategoryTheory.instMonoAppOfFunctor
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Limits.hasFiniteLimits_of_hasLimits
CategoryTheory.Limits.Types.hasLimitsOfSize
UnivLE.self
Subtype.val_injective
finite_range 📖mathematicalFinite
Subcomplex.toSSet
Subcomplex.range
finite_of_epi
Subcomplex.instEpiToRange
finite_subcomplex_top_iff 📖mathematicalFinite
Subcomplex.toSSet
Top.top
Subcomplex
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
finite_iff_of_iso
hasDimensionLT_of_finite 📖mathematicalHasDimensionLTFinite.finite
Finset.max_of_nonempty
Finset.not_nonempty_iff_eq_empty
Nat.instCanonicallyOrderedAdd
Set.ext
instFiniteElemObjOppositeSimplexCategoryOpMkNonDegenerateOfFinite 📖mathematicalFinite
Set.Elem
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
nonDegenerate
Finite.of_injective
Finite.finite
S.ext_iff'
N.ext_iff
instFiniteObjOppositeSimplexCategoryOfFinite 📖mathematicalFinite
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
exists_nonDegenerate
SimplexCategory.le_of_epi
Finite.of_surjective
Finite.instSigma
Finite.of_fintype
SimplexCategory.instFiniteHom
instFiniteElemObjOppositeSimplexCategoryOpMkNonDegenerateOfFinite
instFiniteToSSet 📖mathematicalFinite
Subcomplex.toSSet
hasDimensionLT_of_finite
finite_of_hasDimensionLT
Subcomplex.instHasDimensionLTToSSet
Finite.of_injective
instFiniteObjOppositeSimplexCategoryOfFinite

SSet.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
finite 📖mathematicalFinite
SSet.N

---

← Back to Index