Documentation Verification Report

FiniteColimits

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/FiniteColimits.lean

Statistics

MetricCount
Definitions0
Theoremsfinite_of_isColimit, hasDimensionLT_of_isColimit, iSup_range_eq_top_of_isColimit, instFiniteCoprod, instFiniteInitial, instFiniteSigmaObjOfFinite, range_eq_iSup_of_isColimit, range_eq_iSup_sigma_ι
8
Total8

SSet

Theorems

NameKindAssumesProvesValidatesDepends On
finite_of_isColimit 📖mathematicalFinite
CategoryTheory.Functor.obj
SSet
largeCategory
CategoryTheory.Limits.Cocone.ptfinite_subcomplex_top_iff
iSup_range_eq_top_of_isColimit
finite_iSup_iff
finite_range
hasDimensionLT_of_isColimit 📖mathematicalHasDimensionLT
CategoryTheory.Functor.obj
SSet
largeCategory
CategoryTheory.Limits.Cocone.pthasDimensionLT_subcomplex_top_iff
iSup_range_eq_top_of_isColimit
hasDimensionLT_iSup_iff
instHasDimensionLTToSSetRange
iSup_range_eq_top_of_isColimit 📖mathematicaliSup
Subcomplex
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Subcomplex.range
CategoryTheory.Functor.obj
SSet
largeCategory
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone.ι
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.Subfunctor.ext
Set.ext
CategoryTheory.Subfunctor.iSup_obj
CategoryTheory.Limits.Types.jointly_surjective_of_isColimit
CategoryTheory.Limits.evaluation_preservesColimit
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instFiniteCoprod 📖mathematicalFinite
CategoryTheory.Limits.coprod
SSet
largeCategory
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
hasColimits
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
finite_of_isColimit
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CategoryTheory.Limits.Types.hasColimitsOfSize
UnivLE.self
Finite.of_fintype
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
hasColimits
CategoryTheory.instFiniteDiscrete
instFiniteInitial 📖mathematicalFinite
CategoryTheory.Limits.initial
SSet
largeCategory
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
hasColimits
Finite.of_fintype
Fintype.instPEmpty
finite_of_isColimit
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CategoryTheory.Limits.Types.hasColimitsOfSize
UnivLE.self
Finite.of_fintype
hasColimits
CategoryTheory.instFiniteDiscrete
instFiniteSigmaObjOfFinite 📖mathematicalFiniteCategoryTheory.Limits.sigmaObj
SSet
largeCategory
Finite.exists_equiv_fin
CategoryTheory.Limits.hasColimitsOfShape_of_equivalence
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CategoryTheory.Limits.Types.hasColimitsOfSize
UnivLE.self
Finite.of_fintype
finite_of_isColimit
CategoryTheory.instFiniteDiscrete
range_eq_iSup_of_isColimit 📖mathematicalSubcomplex.range
CategoryTheory.Limits.Cocone.pt
SSet
largeCategory
iSup
Subcomplex
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Category.id_comp
Subcomplex.range_comp
Subcomplex.range_eq_top
CategoryTheory.instEpiId
iSup_range_eq_top_of_isColimit
Subcomplex.image_iSup
range_eq_iSup_sigma_ι 📖mathematicalSubcomplex.range
CategoryTheory.Limits.sigmaObj
SSet
largeCategory
iSup
Subcomplex
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Sigma.ι
range_eq_iSup_of_isColimit
le_antisymm
le_trans
le_refl
le_iSup

---

← Back to Index