Documentation Verification Report

FiniteProd

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/FiniteProd.lean

Statistics

MetricCount
Definitions0
TheoremsofSimplexProd_eq_range, finite_of_isPullback, hasDimensionLE_prod, hasDimensionLT_prod, iSup_subcomplexOfSimplex_prod_eq_top, instFinitePullback, instFiniteTensorObj, instHasDimensionLETensorObjHAddNat, instHasDimensionLTTensorObjHAddNat
9
Total9

SSet

Theorems

NameKindAssumesProvesValidatesDepends On
finite_of_isPullback 📖mathematicalCategoryTheory.IsPullback
SSet
largeCategory
FiniteCategoryTheory.IsPullback.hom_ext
CategoryTheory.CartesianMonoidalCategory.comp_lift
CategoryTheory.CartesianMonoidalCategory.lift_fst
CategoryTheory.eq_whisker
CategoryTheory.CartesianMonoidalCategory.lift_snd
finite_of_mono
instFiniteTensorObj
hasDimensionLE_prod 📖mathematicalHasDimensionLE
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
hasDimensionLT_prod
hasDimensionLT_prod 📖mathematicalHasDimensionLT
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
hasDimensionLT_subcomplex_top_iff
iSup_subcomplexOfSimplex_prod_eq_top
Subcomplex.ofSimplexProd_eq_range
dim_lt_of_nonDegenerate
N.nonDegenerate
hasDimensionLT_of_le
prodStdSimplex.instHasDimensionLETensorObjObjSimplexCategoryStdSimplexMkHAddNat
instHasDimensionLTToSSetRange
iSup_subcomplexOfSimplex_prod_eq_top 📖mathematicaliSup
Subcomplex
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
N
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Subcomplex.prod
Subcomplex.ofSimplex
S.dim
N.toS
S.simplex
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.Subfunctor.ext
Set.ext
CategoryTheory.Subfunctor.iSup_obj
instFinitePullback 📖mathematicalFinite
CategoryTheory.Limits.pullback
SSet
largeCategory
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Limits.hasFiniteLimits_of_hasLimits
hasLimits
CategoryTheory.Limits.cospan
finite_of_isPullback
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Limits.hasFiniteLimits_of_hasLimits
hasLimits
CategoryTheory.IsPullback.of_hasPullback
instFiniteTensorObj 📖mathematicalFinite
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
hasDimensionLT_of_finite
finite_of_hasDimensionLT
instHasDimensionLTTensorObjHAddNat
Subtype.finite
instFiniteObjOppositeSimplexCategoryTensorObj
instFiniteObjOppositeSimplexCategoryOfFinite
instHasDimensionLETensorObjHAddNat 📖mathematicalHasDimensionLE
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
hasDimensionLE_prod
instHasDimensionLTTensorObjHAddNat 📖mathematicalHasDimensionLT
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategory
hasDimensionLT_prod

SSet.Subcomplex

Theorems

NameKindAssumesProvesValidatesDepends On
ofSimplexProd_eq_range 📖mathematicalprod
ofSimplex
range
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet
SSet.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.MonoidalCategoryStruct.tensorHom
DFunLike.coe
Equiv
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
SSet.yonedaEquiv
range_tensorHom
range_eq_ofSimplex
Equiv.apply_symm_apply

---

← Back to Index