| Name | Category | Theorems |
associativity'Iso π | CompOp | 1 mathmath: associativity'Iso_hom_app
|
associativityIso π | CompOp | 1 mathmath: associativityIso_hom_app
|
curriedInverse π | CompOp | β |
equivalence π | CompOp | β |
functor π | CompOp | 9 mathmath: functorCompInverseIso_inv_app, functorCompInverseIso_hom_app, inverseCompFunctorIso_inv_app, iso_hom_toFunctor, functor_comp_inverse, inverse_comp_functor, functor_obj, inverseCompFunctorIso_hom_app, functor_map
|
functorCompInverseIso π | CompOp | 2 mathmath: functorCompInverseIso_inv_app, functorCompInverseIso_hom_app
|
idProdMapHomotopyCategoryCompInverseIso π | CompOp | β |
inverse π | CompOp | 20 mathmath: iso_inv_toFunctor, inverse_map_mkHom_id_homMk, functorCompInverseIso_inv_app, functorCompInverseIso_hom_app, inverse_comp_mapHomotopyCategory_fst, inverse_comp_mapHomotopyCategory_snd, left_unitality, inverseCompFunctorIso_inv_app, inverse_map_mkHom_homMk_id, mapHomotopyCategory_prod_id_comp_inverse, functor_comp_inverse, inverse_map_mkHom_homMk_homMk, inverse_comp_functor, associativity'Iso_hom_app, inverseCompFunctorIso_hom_app, associativity, right_unitality, associativityIso_hom_app, id_prod_mapHomotopyCategory_comp_inverse, inverse_obj
|
inverseCompFunctorIso π | CompOp | 2 mathmath: inverseCompFunctorIso_inv_app, inverseCompFunctorIso_hom_app
|
inverseCompMapHomotopyCategoryFstIso π | CompOp | β |
inverseCompMapHomotopyCategorySndIso π | CompOp | β |
iso π | CompOp | 2 mathmath: iso_inv_toFunctor, iso_hom_toFunctor
|
mapHomotopyCategoryProdIdCompInverseIso π | CompOp | β |