Documentation Verification Report

HoFunctorMonoidal

πŸ“ Source: Mathlib/AlgebraicTopology/SimplicialSet/HoFunctorMonoidal.lean

Statistics

MetricCount
Definitionstensor, tensor, associativity'Iso, associativityIso, curriedInverse, equivalence, functor, functorCompInverseIso, idProdMapHomotopyCategoryCompInverseIso, inverse, inverseCompFunctorIso, inverseCompMapHomotopyCategoryFstIso, inverseCompMapHomotopyCategorySndIso, iso, mapHomotopyCategoryProdIdCompInverseIso, instUniqueObjOppositeTruncatedTensorUnit, isoTerminal, monoidal, instMonoidalOfNatNatCatHoFunctorβ‚‚, unitHomEquiv
20
Theoremstensor_simplex_fst, tensor_simplex_snd, id_tensor_id, map_associator_hom, map_fst, map_snd, map_tensorHom, map_whiskerLeft, map_whiskerRight, tensor_edge, tensor_surjective, associativity, associativity'Iso_hom_app, associativityIso_hom_app, functorCompInverseIso_hom_app, functorCompInverseIso_inv_app, functor_comp_inverse, functor_map, functor_obj, id_prod_mapHomotopyCategory_comp_inverse, inverseCompFunctorIso_hom_app, inverseCompFunctorIso_inv_app, inverse_comp_functor, inverse_comp_mapHomotopyCategory_fst, inverse_comp_mapHomotopyCategory_snd, inverse_map_mkHom_homMk_homMk, inverse_map_mkHom_homMk_id, inverse_map_mkHom_id_homMk, inverse_obj, iso_hom_toFunctor, iso_inv_toFunctor, left_unitality, mapHomotopyCategory_prod_id_comp_inverse, right_unitality, square, unitHomEquiv_eq
36
Total56

SSet.Truncated

Definitions

NameCategoryTheorems
instMonoidalOfNatNatCatHoFunctorβ‚‚ πŸ“–CompOpβ€”

SSet.Truncated.Edge

Definitions

NameCategoryTheorems
tensor πŸ“–CompOp
16 mathmath: SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_id_homMk, map_fst, tensor_surjective, CompStruct.tensor_simplex_snd, id_tensor_id, CompStruct.tensor_simplex_fst, map_associator_hom, map_whiskerLeft, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_id, map_snd, SSet.Truncated.HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_homMk, map_tensorHom, tensor_edge, SSet.Truncated.HomotopyCategory.BinaryProduct.square, map_whiskerRight, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_map

Theorems

NameKindAssumesProvesValidatesDepends On
id_tensor_id πŸ“–mathematicalβ€”tensor
id
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
β€”β€”
map_associator_hom πŸ“–mathematicalβ€”map
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
tensor
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
β€”β€”
map_fst πŸ“–mathematicalβ€”map
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
tensor
CategoryTheory.SemiCartesianMonoidalCategory.fst
β€”β€”
map_snd πŸ“–mathematicalβ€”map
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
tensor
CategoryTheory.SemiCartesianMonoidalCategory.snd
β€”β€”
map_tensorHom πŸ“–mathematicalβ€”map
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
tensor
CategoryTheory.MonoidalCategoryStruct.tensorHom
CategoryTheory.NatTrans.app
β€”β€”
map_whiskerLeft πŸ“–mathematicalβ€”map
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
tensor
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
CategoryTheory.NatTrans.app
β€”β€”
map_whiskerRight πŸ“–mathematicalβ€”map
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
tensor
CategoryTheory.MonoidalCategoryStruct.whiskerRight
CategoryTheory.NatTrans.app
β€”β€”
tensor_edge πŸ“–mathematicalβ€”edge
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
tensor
β€”β€”
tensor_surjective πŸ“–mathematicalβ€”tensorβ€”β€”

SSet.Truncated.Edge.CompStruct

Definitions

NameCategoryTheorems
tensor πŸ“–CompOp
2 mathmath: tensor_simplex_snd, tensor_simplex_fst

Theorems

NameKindAssumesProvesValidatesDepends On
tensor_simplex_fst πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
simplex
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
SSet.Truncated.Edge.tensor
tensor
β€”β€”
tensor_simplex_snd πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
simplex
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
SSet.Truncated.Edge.tensor
tensor
β€”β€”

SSet.Truncated.HomotopyCategory

Definitions

NameCategoryTheorems
instUniqueObjOppositeTruncatedTensorUnit πŸ“–CompOpβ€”
isoTerminal πŸ“–CompOp
2 mathmath: BinaryProduct.left_unitality, BinaryProduct.right_unitality

SSet.Truncated.HomotopyCategory.BinaryProduct

Definitions

NameCategoryTheorems
associativity'Iso πŸ“–CompOp
1 mathmath: associativity'Iso_hom_app
associativityIso πŸ“–CompOp
1 mathmath: associativityIso_hom_app
curriedInverse πŸ“–CompOpβ€”
equivalence πŸ“–CompOpβ€”
functor πŸ“–CompOp
9 mathmath: functorCompInverseIso_inv_app, functorCompInverseIso_hom_app, inverseCompFunctorIso_inv_app, iso_hom_toFunctor, functor_comp_inverse, inverse_comp_functor, functor_obj, inverseCompFunctorIso_hom_app, functor_map
functorCompInverseIso πŸ“–CompOp
2 mathmath: functorCompInverseIso_inv_app, functorCompInverseIso_hom_app
idProdMapHomotopyCategoryCompInverseIso πŸ“–CompOpβ€”
inverse πŸ“–CompOp
20 mathmath: iso_inv_toFunctor, inverse_map_mkHom_id_homMk, functorCompInverseIso_inv_app, functorCompInverseIso_hom_app, inverse_comp_mapHomotopyCategory_fst, inverse_comp_mapHomotopyCategory_snd, left_unitality, inverseCompFunctorIso_inv_app, inverse_map_mkHom_homMk_id, mapHomotopyCategory_prod_id_comp_inverse, functor_comp_inverse, inverse_map_mkHom_homMk_homMk, inverse_comp_functor, associativity'Iso_hom_app, inverseCompFunctorIso_hom_app, associativity, right_unitality, associativityIso_hom_app, id_prod_mapHomotopyCategory_comp_inverse, inverse_obj
inverseCompFunctorIso πŸ“–CompOp
2 mathmath: inverseCompFunctorIso_inv_app, inverseCompFunctorIso_hom_app
inverseCompMapHomotopyCategoryFstIso πŸ“–CompOpβ€”
inverseCompMapHomotopyCategorySndIso πŸ“–CompOpβ€”
iso πŸ“–CompOp
2 mathmath: iso_inv_toFunctor, iso_hom_toFunctor
mapHomotopyCategoryProdIdCompInverseIso πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
associativity πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
SSet.Truncated.HomotopyCategory
CategoryTheory.prod'
CategoryTheory.uniformProd
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
CategoryTheory.Functor.prod
inverse
CategoryTheory.Functor.id
SSet.Truncated.mapHomotopyCategory
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Equivalence.functor
CategoryTheory.prod.associativity
β€”CategoryTheory.Functor.ext_of_iso
associativityIso_hom_app
associativity'Iso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
SSet.Truncated.HomotopyCategory
CategoryTheory.prod'
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.prod.associativity
CategoryTheory.Functor.prod
CategoryTheory.uniformProd
inverse
CategoryTheory.Functor.id
SSet.Truncated.mapHomotopyCategory
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Functor
CategoryTheory.Functor.category
associativity'Iso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
associativityIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
SSet.Truncated.HomotopyCategory
CategoryTheory.prod'
CategoryTheory.uniformProd
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.prod
inverse
CategoryTheory.Functor.id
SSet.Truncated.mapHomotopyCategory
CategoryTheory.Iso.hom
CategoryTheory.MonoidalCategoryStruct.associator
CategoryTheory.Equivalence.functor
CategoryTheory.prod.associativity
CategoryTheory.Functor
CategoryTheory.Functor.category
associativityIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”associativity'Iso_hom_app
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.prod_id
functorCompInverseIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
SSet.Truncated.HomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.Functor.comp
CategoryTheory.uniformProd
functor
inverse
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
functorCompInverseIso
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
functorCompInverseIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
SSet.Truncated.HomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.uniformProd
functor
inverse
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
functorCompInverseIso
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
functor_comp_inverse πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
SSet.Truncated.HomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.uniformProd
functor
inverse
CategoryTheory.Functor.id
β€”CategoryTheory.Functor.ext_of_iso
functor_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
SSet.Truncated.HomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.uniformProd
functor
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
SSet.Truncated.HomotopyCategory.homMk
SSet.Truncated.Edge.tensor
Quiver.Hom
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.catToReflQuiver
β€”β€”
functor_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
SSet.Truncated.HomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.uniformProd
functor
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
β€”β€”
id_prod_mapHomotopyCategory_comp_inverse πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
SSet.Truncated.HomotopyCategory
CategoryTheory.prod'
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
SSet.Truncated.mapHomotopyCategory
inverse
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
β€”CategoryTheory.Functor.ext_of_iso
inverseCompFunctorIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
SSet.Truncated.HomotopyCategory
CategoryTheory.uniformProd
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
inverse
functor
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
inverseCompFunctorIso
CategoryTheory.CategoryStruct.id
CategoryTheory.prod
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”β€”
inverseCompFunctorIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
SSet.Truncated.HomotopyCategory
CategoryTheory.uniformProd
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
inverse
functor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
inverseCompFunctorIso
CategoryTheory.CategoryStruct.id
CategoryTheory.prod
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
β€”β€”
inverse_comp_functor πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
SSet.Truncated.HomotopyCategory
CategoryTheory.uniformProd
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
inverse
functor
CategoryTheory.Functor.id
β€”CategoryTheory.Functor.ext_of_iso
inverse_comp_mapHomotopyCategory_fst πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
SSet.Truncated.HomotopyCategory
CategoryTheory.uniformProd
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
inverse
SSet.Truncated.mapHomotopyCategory
CategoryTheory.SemiCartesianMonoidalCategory.fst
CategoryTheory.Prod.fst
β€”CategoryTheory.Functor.ext_of_iso
inverse_comp_mapHomotopyCategory_snd πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
SSet.Truncated.HomotopyCategory
CategoryTheory.uniformProd
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
inverse
SSet.Truncated.mapHomotopyCategory
CategoryTheory.SemiCartesianMonoidalCategory.snd
CategoryTheory.Prod.snd
β€”CategoryTheory.Functor.ext_of_iso
inverse_map_mkHom_homMk_homMk πŸ“–mathematicalβ€”CategoryTheory.Functor.map
SSet.Truncated.HomotopyCategory
CategoryTheory.uniformProd
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
inverse
CategoryTheory.Prod.mkHom
CategoryTheory.Category.toCategoryStruct
SSet.Truncated.HomotopyCategory.homMk
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
SSet.Truncated.Edge.tensor
β€”SSet.Truncated.HomotopyCategory.homMk_comp_homMk
inverse_map_mkHom_homMk_id πŸ“–mathematicalβ€”CategoryTheory.Functor.map
SSet.Truncated.HomotopyCategory
CategoryTheory.uniformProd
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
inverse
CategoryTheory.Prod.mkHom
CategoryTheory.Category.toCategoryStruct
SSet.Truncated.HomotopyCategory.homMk
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
SSet.Truncated.Edge.tensor
SSet.Truncated.Edge.id
β€”β€”
inverse_map_mkHom_id_homMk πŸ“–mathematicalβ€”CategoryTheory.Functor.map
SSet.Truncated.HomotopyCategory
CategoryTheory.uniformProd
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
inverse
CategoryTheory.Prod.mkHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
SSet.Truncated.HomotopyCategory.homMk
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
SSet.Truncated.Edge.tensor
SSet.Truncated.Edge.id
β€”β€”
inverse_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
SSet.Truncated.HomotopyCategory
CategoryTheory.uniformProd
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
inverse
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
β€”β€”
iso_hom_toFunctor πŸ“–mathematicalβ€”CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Cat.of
SSet.Truncated.HomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.uniformProd
CategoryTheory.Iso.hom
CategoryTheory.Cat
CategoryTheory.Cat.category
iso
functor
β€”β€”
iso_inv_toFunctor πŸ“–mathematicalβ€”CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Cat.of
SSet.Truncated.HomotopyCategory
CategoryTheory.uniformProd
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
CategoryTheory.Iso.inv
CategoryTheory.Cat
CategoryTheory.Cat.category
iso
inverse
β€”β€”
left_unitality πŸ“–mathematicalβ€”CategoryTheory.Prod.snd
CategoryTheory.Bundled.Ξ±
CategoryTheory.Category
CategoryTheory.Cat.chosenTerminal
CategoryTheory.Cat.str
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.Functor.comp
CategoryTheory.prod'
CategoryTheory.Cat.of
CategoryTheory.Functor.prod
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Iso.inv
CategoryTheory.Cat
CategoryTheory.Cat.category
SSet.Truncated.HomotopyCategory.isoTerminal
CategoryTheory.Functor.id
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
inverse
SSet.Truncated.mapHomotopyCategory
CategoryTheory.SemiCartesianMonoidalCategory.snd
β€”inverse_comp_mapHomotopyCategory_snd
mapHomotopyCategory_prod_id_comp_inverse πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
SSet.Truncated.HomotopyCategory
CategoryTheory.prod'
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
CategoryTheory.Functor.prod
SSet.Truncated.mapHomotopyCategory
CategoryTheory.Functor.id
inverse
CategoryTheory.uniformProd
CategoryTheory.MonoidalCategoryStruct.whiskerRight
β€”CategoryTheory.Functor.ext_of_iso
right_unitality πŸ“–mathematicalβ€”CategoryTheory.Prod.fst
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.Bundled.Ξ±
CategoryTheory.Category
CategoryTheory.Cat.chosenTerminal
CategoryTheory.Cat.str
CategoryTheory.Functor.comp
CategoryTheory.prod'
CategoryTheory.Cat.of
CategoryTheory.Functor.prod
CategoryTheory.Functor.id
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Iso.inv
CategoryTheory.Cat
CategoryTheory.Cat.category
SSet.Truncated.HomotopyCategory.isoTerminal
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
inverse
SSet.Truncated.mapHomotopyCategory
CategoryTheory.SemiCartesianMonoidalCategory.fst
β€”inverse_comp_mapHomotopyCategory_fst
square πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
SSet.Truncated.HomotopyCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.Truncated.instCartesianMonoidalCategory
CategoryTheory.Category.toCategoryStruct
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
SSet.Truncated.HomotopyCategory.homMk
SSet.Truncated.Edge.tensor
SSet.Truncated.Edge.id
β€”SSet.Truncated.HomotopyCategory.homMk_comp_homMk

SSet.Truncated.hoFunctor

Definitions

NameCategoryTheorems
monoidal πŸ“–CompOp
1 mathmath: SSet.hoFunctor.unitHomEquiv_eq

SSet.hoFunctor

Definitions

NameCategoryTheorems
unitHomEquiv πŸ“–CompOp
1 mathmath: unitHomEquiv_eq

Theorems

NameKindAssumesProvesValidatesDepends On
unitHomEquiv_eq πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
SSet
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.catToReflQuiver
SSet.largeCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
SSet.instCartesianMonoidalCategory
CategoryTheory.Functor
CategoryTheory.Bundled.Ξ±
CategoryTheory.Category
CategoryTheory.Cat.chosenTerminal
CategoryTheory.Cat.str
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
SSet.hoFunctor
EquivLike.toFunLike
Equiv.instEquivLike
unitHomEquiv
CategoryTheory.Functor.comp
CategoryTheory.Cat.instCartesianMonoidalCategory
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Functor.LaxMonoidal.Ξ΅
CategoryTheory.Functor.Monoidal.toLaxMonoidal
SSet.Truncated.hoFunctor.monoidal
CategoryTheory.Functor.map
β€”β€”

---

← Back to Index