Documentation Verification Report

HomotopyCat

šŸ“ Source: Mathlib/AlgebraicTopology/SimplicialSet/HomotopyCat.lean

Statistics

MetricCount
DefinitionsOneTruncationā‚‚, HoRelā‚‚, map, nerveEquiv, nerveHomEquiv, ofNerveā‚‚, natIso, reflQuiver, homMk, instUniqueOfObjOppositeTruncatedOfNatNatOpMkSimplexCategoryLeLenMk, isTerminal, mk, mkNatIso, mkNatTrans, morphismPropertyHomMk, quotientFunctor, ev01ā‚‚, ev02ā‚‚, ev0ā‚‚, ev12ā‚‚, ev1ā‚‚, ev2ā‚‚, hoFunctorā‚‚, instCategoryHomotopyCategory, mapHomotopyCategory, Ī“0ā‚‚, Ī“1ā‚‚, Ī“2ā‚‚, ι0ā‚‚, ι1ā‚‚, ι2ā‚‚, hoFunctor, equiv, terminalIso, instUniqueHomOneTruncationā‚‚ObjTruncatedOfNatNatTruncationSimplexCategoryStdSimplexMk, instUniqueHomotopyCategoryObjTruncatedOfNatNatTruncationSimplexCategoryStdSimplexMk, instUniqueOneTruncationā‚‚DeltaZero, isTerminalHoFunctorDeltaZero, oneTruncationā‚‚
39
Theoremsext, mk, homOfEq_edge, hom_ext, hom_ext_iff, id_edge, map_map, map_obj, nerveEquiv_apply, nerveEquiv_symm_apply_map, nerveEquiv_symm_apply_obj, nerveHomEquiv_apply, nerveHomEquiv_id, nerve_hom_ext, natIso_hom_app_map, natIso_hom_app_obj, natIso_inv_app_map, natIso_inv_app_obj_map, natIso_inv_app_obj_obj, reflQuiver_Hom, reflQuiver_id, cases_on, congr_arrowMk_homMk, ext, functor_ext, homMk_comp_homMk, homMk_comp_homMk_assoc, homMk_id, instFullFreeReflOneTruncationā‚‚QuotientFunctor, instSubsingletonOfObjOppositeTruncatedOfNatNatOpMkSimplexCategoryLeLenMk, lift_map_homMk, lift_obj_mk, lift_unique', mkNatIso_hom_app_mk, mkNatIso_inv_app_mk, mkNatTrans_app_mk, mk_surjective, morphismPropertyHomMk_eq_strictMap, morphismPropertyHomMk_of_edge, morphismProperty_eq_top, multiplicativeClosure_morphismPropertyHomMk, subsingleton_hom, hoFunctorā‚‚_naturality, mapHomotopyCategory_homMk, mapHomotopyCategory_obj, preservesTerminal, preservesTerminal', instIsDiscreteHomotopyCategoryObjTruncatedOfNatNatTruncationSimplexCategoryStdSimplexMk, oneTruncationā‚‚_map, oneTruncationā‚‚_obj
50
Total89

CategoryTheory.toNerveā‚‚

Theorems

NameKindAssumesProvesValidatesDepends On
ext šŸ“–ā€”SSet.OneTruncationā‚‚.map
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.Truncated
SSet.Truncated.largeCategory
SSet.truncation
CategoryTheory.nerve
——SSet.OneTruncationā‚‚.nerve_hom_ext

SSet

Definitions

NameCategoryTheorems
OneTruncationā‚‚ šŸ“–CompOp
19 mathmath: OneTruncationā‚‚.nerveEquiv_apply, oneTruncationā‚‚_obj, OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_map, OneTruncationā‚‚.nerveHomEquiv_id, OneTruncationā‚‚.homOfEq_edge, OneTruncationā‚‚.reflQuiver_id, OneTruncationā‚‚.HoRelā‚‚.mk, Truncated.HomotopyCategory.instFullFreeReflOneTruncationā‚‚QuotientFunctor, OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_obj, OneTruncationā‚‚.nerveEquiv_symm_apply_map, Truncated.hoFunctorā‚‚_naturality, OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_map, OneTruncationā‚‚.nerveEquiv_symm_apply_obj, OneTruncationā‚‚.reflQuiver_Hom, OneTruncationā‚‚.nerveHomEquiv_apply, Truncated.HomotopyCategory.morphismPropertyHomMk_eq_strictMap, OneTruncationā‚‚.map_map, OneTruncationā‚‚.map_obj, OneTruncationā‚‚.id_edge
hoFunctor šŸ“–CompOp
12 mathmath: hoFunctor.preservesTerminal', hoFunctor.unitHomEquiv_eq, CategoryTheory.hoFunctor.preservesFiniteProducts, CategoryTheory.hoFunctor.instIsLeftAdjointSSetCatHoFunctor, hoFunctor.preservesTerminal, CategoryTheory.hoFunctor.preservesBinaryProducts, CategoryTheory.hoFunctor.isIso_prodComparison_stdSimplex, CategoryTheory.hoFunctor.instIsIsoCatProdComparisonSSetHoFunctorNerve, CategoryTheory.hoFunctor.preservesBinaryProduct, CategoryTheory.hoFunctor.isIso_prodComparison, CategoryTheory.instIsIsoSSetProdComparisonCatCompNerveFunctorHoFunctorOf, CategoryTheory.nerveAdjunction.isIso_counit
instUniqueHomOneTruncationā‚‚ObjTruncatedOfNatNatTruncationSimplexCategoryStdSimplexMk šŸ“–CompOp—
instUniqueHomotopyCategoryObjTruncatedOfNatNatTruncationSimplexCategoryStdSimplexMk šŸ“–CompOp—
instUniqueOneTruncationā‚‚DeltaZero šŸ“–CompOp—
isTerminalHoFunctorDeltaZero šŸ“–CompOp—
oneTruncationā‚‚ šŸ“–CompOp
8 mathmath: oneTruncationā‚‚_obj, OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_map, oneTruncationā‚‚_map, OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_obj_obj, OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_obj, Truncated.hoFunctorā‚‚_naturality, OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_map, OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_obj_map

Theorems

NameKindAssumesProvesValidatesDepends On
instIsDiscreteHomotopyCategoryObjTruncatedOfNatNatTruncationSimplexCategoryStdSimplexMk šŸ“–mathematical—CategoryTheory.IsDiscrete
Truncated.HomotopyCategory
CategoryTheory.Functor.obj
SSet
largeCategory
Truncated
Truncated.largeCategory
truncation
SimplexCategory
SimplexCategory.smallCategory
stdSimplex
Truncated.instCategoryHomotopyCategory
—CategoryTheory.Quotient.instSubsingletonHom
CategoryTheory.Cat.FreeRefl.instSubsingletonHomOfUnique
Unique.instSubsingleton
oneTruncationā‚‚_map šŸ“–mathematical—CategoryTheory.Functor.map
Truncated
Truncated.largeCategory
CategoryTheory.ReflQuiv
CategoryTheory.ReflQuiv.category
oneTruncationā‚‚
OneTruncationā‚‚.map
——
oneTruncationā‚‚_obj šŸ“–mathematical—CategoryTheory.Functor.obj
Truncated
Truncated.largeCategory
CategoryTheory.ReflQuiv
CategoryTheory.ReflQuiv.category
oneTruncationā‚‚
CategoryTheory.ReflQuiv.of
OneTruncationā‚‚
OneTruncationā‚‚.reflQuiver
——

SSet.OneTruncationā‚‚

Definitions

NameCategoryTheorems
HoRelā‚‚ šŸ“–CompData
1 mathmath: HoRelā‚‚.mk
map šŸ“–CompOp
3 mathmath: SSet.oneTruncationā‚‚_map, map_map, map_obj
nerveEquiv šŸ“–CompOp
8 mathmath: nerveEquiv_apply, ofNerveā‚‚.natIso_hom_app_map, nerveHomEquiv_id, ofNerveā‚‚.natIso_hom_app_obj, nerveEquiv_symm_apply_map, ofNerveā‚‚.natIso_inv_app_map, nerveEquiv_symm_apply_obj, nerveHomEquiv_apply
nerveHomEquiv šŸ“–CompOp
4 mathmath: ofNerveā‚‚.natIso_hom_app_map, nerveHomEquiv_id, ofNerveā‚‚.natIso_inv_app_map, nerveHomEquiv_apply
ofNerveā‚‚ šŸ“–CompOp—
reflQuiver šŸ“–CompOp
15 mathmath: SSet.oneTruncationā‚‚_obj, ofNerveā‚‚.natIso_hom_app_map, nerveHomEquiv_id, homOfEq_edge, reflQuiver_id, HoRelā‚‚.mk, SSet.Truncated.HomotopyCategory.instFullFreeReflOneTruncationā‚‚QuotientFunctor, SSet.Truncated.hoFunctorā‚‚_naturality, ofNerveā‚‚.natIso_inv_app_map, reflQuiver_Hom, nerveHomEquiv_apply, SSet.Truncated.HomotopyCategory.morphismPropertyHomMk_eq_strictMap, map_map, map_obj, id_edge

Theorems

NameKindAssumesProvesValidatesDepends On
homOfEq_edge šŸ“–mathematical—SSet.Truncated.Edge.edge
Quiver.homOfEq
SSet.OneTruncationā‚‚
CategoryTheory.ReflQuiver.toQuiver
reflQuiver
——
hom_ext šŸ“–ā€”SSet.Truncated.Edge.edge——SSet.Truncated.Edge.ext
hom_ext_iff šŸ“–mathematical—SSet.Truncated.Edge.edge—hom_ext
id_edge šŸ“–mathematical—SSet.Truncated.Edge.edge
CategoryTheory.ReflQuiver.id
SSet.OneTruncationā‚‚
reflQuiver
CategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.Ļƒā‚‚
——
map_map šŸ“–mathematical—Prefunctor.map
SSet.OneTruncationā‚‚
CategoryTheory.ReflQuiver.toQuiver
reflQuiver
CategoryTheory.ReflPrefunctor.toPrefunctor
map
SSet.Truncated.Edge.map
——
map_obj šŸ“–mathematical—Prefunctor.obj
SSet.OneTruncationā‚‚
CategoryTheory.ReflQuiver.toQuiver
reflQuiver
CategoryTheory.ReflPrefunctor.toPrefunctor
map
CategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
——
nerveEquiv_apply šŸ“–mathematical—DFunLike.coe
Equiv
SSet.OneTruncationā‚‚
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.Truncated
SSet.Truncated.largeCategory
SSet.truncation
CategoryTheory.nerve
EquivLike.toFunLike
Equiv.instEquivLike
nerveEquiv
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
——
nerveEquiv_symm_apply_map šŸ“–mathematical—CategoryTheory.Functor.map
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
DFunLike.coe
Equiv
SSet.OneTruncationā‚‚
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.Truncated
SSet.Truncated.largeCategory
SSet.truncation
CategoryTheory.nerve
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
nerveEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
nerveEquiv_symm_apply_obj šŸ“–mathematical—CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
DFunLike.coe
Equiv
SSet.OneTruncationā‚‚
SSet
SSet.largeCategory
SSet.Truncated
SSet.Truncated.largeCategory
SSet.truncation
CategoryTheory.nerve
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
nerveEquiv
——
nerveHomEquiv_apply šŸ“–mathematical—DFunLike.coe
Equiv
Quiver.Hom
SSet.OneTruncationā‚‚
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.Truncated
SSet.Truncated.largeCategory
SSet.truncation
CategoryTheory.nerve
CategoryTheory.ReflQuiver.toQuiver
reflQuiver
CategoryTheory.catToReflQuiver
EquivLike.toFunLike
Equiv.instEquivLike
nerveEquiv
nerveHomEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ComposableArrows.left
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.smallCategory
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
Opposite.op
CategoryTheory.Functor.map
CategoryTheory.types
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
SimplexCategory.Truncated.Γ₂
SSet.Truncated.Edge.edge
CategoryTheory.eqToHom
CategoryTheory.ComposableArrows
SSet.Truncated.Edge.src_eq
CategoryTheory.ComposableArrows.right
CategoryTheory.ComposableArrows.hom
SSet.Truncated.Edge.tgt_eq
——
nerveHomEquiv_id šŸ“–mathematical—DFunLike.coe
Equiv
Quiver.Hom
SSet.OneTruncationā‚‚
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.Truncated
SSet.Truncated.largeCategory
SSet.truncation
CategoryTheory.nerve
CategoryTheory.ReflQuiver.toQuiver
reflQuiver
CategoryTheory.catToReflQuiver
EquivLike.toFunLike
Equiv.instEquivLike
nerveEquiv
nerveHomEquiv
CategoryTheory.ReflQuiver.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
—CategoryTheory.nerve.homEquiv_id
nerve_hom_ext šŸ“–ā€”map
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.Truncated
SSet.Truncated.largeCategory
SSet.truncation
CategoryTheory.nerve
——SSet.Truncated.IsStrictSegal.hom_ext
SSet.StrictSegal.instIsStrictSegalObjTruncatedHAddNatOfNatTruncationOfIsStrictSegal
CategoryTheory.Nerve.isStrictSegal
SSet.Truncated.Edge.exists_of_simplex
CategoryTheory.ReflPrefunctor.congr_obj
homOfEq_edge
CategoryTheory.ReflPrefunctor.congr_hom
reflQuiver_Hom šŸ“–mathematical—Quiver.Hom
SSet.OneTruncationā‚‚
CategoryTheory.ReflQuiver.toQuiver
reflQuiver
SSet.Truncated.Edge
——
reflQuiver_id šŸ“–mathematical—CategoryTheory.ReflQuiver.id
SSet.OneTruncationā‚‚
reflQuiver
SSet.Truncated.Edge.id
——

SSet.OneTruncationā‚‚.HoRelā‚‚

Theorems

NameKindAssumesProvesValidatesDepends On
mk šŸ“–mathematical—SSet.OneTruncationā‚‚.HoRelā‚‚
CategoryTheory.Functor.obj
CategoryTheory.Paths
SSet.OneTruncationā‚‚
CategoryTheory.Paths.categoryPaths
CategoryTheory.ReflQuiver.toQuiver
SSet.OneTruncationā‚‚.reflQuiver
CategoryTheory.Cat.FreeRefl
CategoryTheory.Cat.FreeRefl.instCategory
CategoryTheory.Cat.FreeRefl.quotientFunctor
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom.toPath
——

SSet.OneTruncationā‚‚.ofNerveā‚‚

Definitions

NameCategoryTheorems
natIso šŸ“–CompOp
5 mathmath: natIso_hom_app_map, natIso_inv_app_obj_obj, natIso_hom_app_obj, natIso_inv_app_map, natIso_inv_app_obj_map

Theorems

NameKindAssumesProvesValidatesDepends On
natIso_hom_app_map šŸ“–mathematical—Prefunctor.map
CategoryTheory.Bundled.α
CategoryTheory.ReflQuiver
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.ReflQuiv
CategoryTheory.ReflQuiv.category
CategoryTheory.Functor.comp
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.Nerve.nerveFunctorā‚‚
SSet.oneTruncationā‚‚
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.ReflQuiv.instReflQuiverα
CategoryTheory.ReflQuiv.forget
CategoryTheory.ReflPrefunctor.toPrefunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
natIso
DFunLike.coe
Equiv
Quiver.Hom
SSet.OneTruncationā‚‚
SSet
SSet.largeCategory
SSet.truncation
CategoryTheory.nerve
CategoryTheory.Category
CategoryTheory.Cat.str
SSet.OneTruncationā‚‚.reflQuiver
CategoryTheory.catToReflQuiver
EquivLike.toFunLike
Equiv.instEquivLike
SSet.OneTruncationā‚‚.nerveEquiv
SSet.OneTruncationā‚‚.nerveHomEquiv
——
natIso_hom_app_obj šŸ“–mathematical—Prefunctor.obj
CategoryTheory.Bundled.α
CategoryTheory.ReflQuiver
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.ReflQuiv
CategoryTheory.ReflQuiv.category
CategoryTheory.Functor.comp
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.Nerve.nerveFunctorā‚‚
SSet.oneTruncationā‚‚
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.ReflQuiv.instReflQuiverα
CategoryTheory.ReflQuiv.forget
CategoryTheory.ReflPrefunctor.toPrefunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
natIso
DFunLike.coe
Equiv
SSet.OneTruncationā‚‚
SSet
SSet.largeCategory
SSet.truncation
CategoryTheory.nerve
CategoryTheory.Category
CategoryTheory.Cat.str
EquivLike.toFunLike
Equiv.instEquivLike
SSet.OneTruncationā‚‚.nerveEquiv
——
natIso_inv_app_map šŸ“–mathematical—Prefunctor.map
CategoryTheory.Bundled.α
CategoryTheory.ReflQuiver
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.ReflQuiv
CategoryTheory.ReflQuiv.category
CategoryTheory.ReflQuiv.forget
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.ReflQuiv.instReflQuiverα
CategoryTheory.Functor.comp
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.Nerve.nerveFunctorā‚‚
SSet.oneTruncationā‚‚
CategoryTheory.ReflPrefunctor.toPrefunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
natIso
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Category
CategoryTheory.catToReflQuiver
CategoryTheory.Cat.str
SSet.OneTruncationā‚‚
SSet
SSet.largeCategory
SSet.truncation
CategoryTheory.nerve
EquivLike.toFunLike
Equiv.instEquivLike
SSet.OneTruncationā‚‚.nerveEquiv
Equiv.symm
SSet.OneTruncationā‚‚.reflQuiver
SSet.OneTruncationā‚‚.nerveHomEquiv
——
natIso_inv_app_obj_map šŸ“–mathematical—CategoryTheory.Functor.map
SimplexCategory.len
Opposite.unop
SimplexCategory
CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.smallCategory
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
Opposite.op
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat.str
Prefunctor.obj
CategoryTheory.ReflQuiver
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.ReflQuiv
CategoryTheory.ReflQuiv.category
CategoryTheory.ReflQuiv.forget
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.ReflQuiv.instReflQuiverα
CategoryTheory.Functor.comp
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.Nerve.nerveFunctorā‚‚
SSet.oneTruncationā‚‚
CategoryTheory.ReflPrefunctor.toPrefunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
natIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
natIso_inv_app_obj_obj šŸ“–mathematical—CategoryTheory.Functor.obj
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory.smallCategory
CategoryTheory.Functor.op
SimplexCategory.Truncated.inclusion
Opposite.op
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Cat.str
Prefunctor.obj
CategoryTheory.ReflQuiver
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.ReflQuiv
CategoryTheory.ReflQuiv.category
CategoryTheory.ReflQuiv.forget
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.ReflQuiv.instReflQuiverα
CategoryTheory.Functor.comp
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.Nerve.nerveFunctorā‚‚
SSet.oneTruncationā‚‚
CategoryTheory.ReflPrefunctor.toPrefunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
natIso
——

SSet.Truncated

Definitions

NameCategoryTheorems
ev01ā‚‚ šŸ“–CompOp—
ev02ā‚‚ šŸ“–CompOp—
ev0ā‚‚ šŸ“–CompOp—
ev12ā‚‚ šŸ“–CompOp—
ev1ā‚‚ šŸ“–CompOp—
ev2ā‚‚ šŸ“–CompOp—
hoFunctorā‚‚ šŸ“–CompOp—
instCategoryHomotopyCategory šŸ“–CompOp
50 mathmath: HomotopyCategory.BinaryProduct.iso_inv_toFunctor, HomotopyCategory.descOfTruncation_comp, mapHomotopyCategory_homMk, SSet.instIsDiscreteHomotopyCategoryObjTruncatedOfNatNatTruncationSimplexCategoryStdSimplexMk, HomotopyCategory.BinaryProduct.inverse_map_mkHom_id_homMk, HomotopyCategory.mkNatTrans_app_mk, HomotopyCategory.BinaryProduct.functorCompInverseIso_inv_app, HomotopyCategory.BinaryProduct.functorCompInverseIso_hom_app, HomotopyCategory.multiplicativeClosure_morphismPropertyHomMk, HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_fst, HomotopyCategory.lift_obj_mk, HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_snd, HomotopyCategory.instFullFreeReflOneTruncationā‚‚QuotientFunctor, HomotopyCategory.BinaryProduct.left_unitality, HomotopyCategory.BinaryProduct.inverseCompFunctorIso_inv_app, HomotopyCategory.homMk_id, HomotopyCategory.BinaryProduct.iso_hom_toFunctor, HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_id, HomotopyCategory.BinaryProduct.mapHomotopyCategory_prod_id_comp_inverse, HomotopyCategory.BinaryProduct.functor_comp_inverse, HomotopyCategory.descOfTruncation_map_homMk, HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_homMk, hoFunctorā‚‚_naturality, HomotopyCategory.mkNatIso_inv_app_mk, HomotopyCategory.BinaryProduct.inverse_comp_functor, HomotopyCategory.homToNerveMk_app_one, HomotopyCategory.congr_arrowMk_homMk, mapHomotopyCategory_obj, HomotopyCategory.lift_map_homMk, HomotopyCategory.BinaryProduct.associativity'Iso_hom_app, HomotopyCategory.BinaryProduct.functor_obj, HomotopyCategory.mkNatIso_hom_app_mk, HomotopyCategory.BinaryProduct.square, HomotopyCategory.BinaryProduct.inverseCompFunctorIso_hom_app, HomotopyCategory.homToNerveMk_app_edge, HomotopyCategory.BinaryProduct.associativity, HomotopyCategory.BinaryProduct.right_unitality, HomotopyCategory.BinaryProduct.associativityIso_hom_app, HomotopyCategory.homMk_comp_homMk_assoc, HomotopyCategory.homToNerveMk_app_zero, HomotopyCategory.morphismPropertyHomMk_eq_strictMap, HomotopyCategory.homMk_comp_homMk, HomotopyCategory.homToNerveMk_comp, HomotopyCategory.BinaryProduct.functor_map, HomotopyCategory.subsingleton_hom, HomotopyCategory.BinaryProduct.id_prod_mapHomotopyCategory_comp_inverse, HomotopyCategory.descOfTruncation_obj_mk, HomotopyCategory.BinaryProduct.inverse_obj, HomotopyCategory.homToNerveMk_comp_assoc, HomotopyCategory.morphismProperty_eq_top
mapHomotopyCategory šŸ“–CompOp
13 mathmath: HomotopyCategory.descOfTruncation_comp, mapHomotopyCategory_homMk, HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_fst, HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_snd, HomotopyCategory.BinaryProduct.left_unitality, HomotopyCategory.BinaryProduct.mapHomotopyCategory_prod_id_comp_inverse, hoFunctorā‚‚_naturality, mapHomotopyCategory_obj, HomotopyCategory.BinaryProduct.associativity'Iso_hom_app, HomotopyCategory.BinaryProduct.associativity, HomotopyCategory.BinaryProduct.right_unitality, HomotopyCategory.BinaryProduct.associativityIso_hom_app, HomotopyCategory.BinaryProduct.id_prod_mapHomotopyCategory_comp_inverse
Ī“0ā‚‚ šŸ“–CompOp—
Ī“1ā‚‚ šŸ“–CompOp—
Ī“2ā‚‚ šŸ“–CompOp—
ι0ā‚‚ šŸ“–CompOp—
ι1ā‚‚ šŸ“–CompOp—
ι2ā‚‚ šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
hoFunctorā‚‚_naturality šŸ“–mathematical—CategoryTheory.Functor.comp
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.Functor.obj
SSet.Truncated
largeCategory
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.ReflQuiv
CategoryTheory.ReflQuiv.category
SSet.oneTruncationā‚‚
CategoryTheory.Cat.freeRefl
CategoryTheory.Cat.str
HomotopyCategory
instCategoryHomotopyCategory
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.Functor.map
HomotopyCategory.quotientFunctor
CategoryTheory.Cat.FreeRefl
SSet.OneTruncationā‚‚
SSet.OneTruncationā‚‚.reflQuiver
CategoryTheory.Cat.FreeRefl.instCategory
mapHomotopyCategory
——
mapHomotopyCategory_homMk šŸ“–mathematical—CategoryTheory.Functor.map
HomotopyCategory
instCategoryHomotopyCategory
mapHomotopyCategory
HomotopyCategory.homMk
CategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
Edge.map
——
mapHomotopyCategory_obj šŸ“–mathematical—CategoryTheory.Functor.obj
HomotopyCategory
instCategoryHomotopyCategory
mapHomotopyCategory
CategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
——

SSet.Truncated.HomotopyCategory

Definitions

NameCategoryTheorems
homMk šŸ“–CompOp
15 mathmath: SSet.Truncated.mapHomotopyCategory_homMk, BinaryProduct.inverse_map_mkHom_id_homMk, homMk_id, BinaryProduct.inverse_map_mkHom_homMk_id, descOfTruncation_map_homMk, BinaryProduct.inverse_map_mkHom_homMk_homMk, homToNerveMk_app_one, congr_arrowMk_homMk, lift_map_homMk, BinaryProduct.square, homToNerveMk_app_edge, homMk_comp_homMk_assoc, homMk_comp_homMk, BinaryProduct.functor_map, morphismPropertyHomMk_of_edge
instUniqueOfObjOppositeTruncatedOfNatNatOpMkSimplexCategoryLeLenMk šŸ“–CompOp—
isTerminal šŸ“–CompOp—
mk šŸ“–CompOp—
mkNatIso šŸ“–CompOp
2 mathmath: mkNatIso_inv_app_mk, mkNatIso_hom_app_mk
mkNatTrans šŸ“–CompOp
1 mathmath: mkNatTrans_app_mk
morphismPropertyHomMk šŸ“–CompOp
3 mathmath: multiplicativeClosure_morphismPropertyHomMk, morphismPropertyHomMk_eq_strictMap, morphismPropertyHomMk_of_edge
quotientFunctor šŸ“–CompOp
3 mathmath: instFullFreeReflOneTruncationā‚‚QuotientFunctor, SSet.Truncated.hoFunctorā‚‚_naturality, morphismPropertyHomMk_eq_strictMap

Theorems

NameKindAssumesProvesValidatesDepends On
cases_on šŸ“–ā€”ā€”ā€”ā€”mk_surjective
congr_arrowMk_homMk šŸ“–mathematicalSSet.Truncated.Edge.edgeSSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
homMk
—SSet.Truncated.Edge.ext
SSet.Truncated.Edge.tgt_eq
SSet.Truncated.Edge.src_eq
ext šŸ“–ā€”CategoryTheory.Quotient.as
CategoryTheory.Paths
SSet.OneTruncationā‚‚
CategoryTheory.Paths.categoryPaths
CategoryTheory.ReflQuiver.toQuiver
SSet.OneTruncationā‚‚.reflQuiver
CategoryTheory.Cat.FreeReflRel
CategoryTheory.Cat.FreeRefl
CategoryTheory.Cat.FreeRefl.instCategory
SSet.OneTruncationā‚‚.HoRelā‚‚
——mk_surjective
functor_ext šŸ“–ā€”CategoryTheory.Functor.obj
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.Functor.map
homMk
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
——CategoryTheory.Functor.ext_of_iso
CategoryTheory.Category.assoc
CategoryTheory.eqToHom_trans
CategoryTheory.Category.comp_id
homMk_comp_homMk šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
SSet.Truncated.HomotopyCategory
CategoryTheory.Category.toCategoryStruct
SSet.Truncated.instCategoryHomotopyCategory
homMk
—CategoryTheory.Functor.map_comp
CategoryTheory.Quotient.sound
homMk_comp_homMk_assoc šŸ“–mathematical—CategoryTheory.CategoryStruct.comp
SSet.Truncated.HomotopyCategory
CategoryTheory.Category.toCategoryStruct
SSet.Truncated.instCategoryHomotopyCategory
homMk
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homMk_comp_homMk
homMk_id šŸ“–mathematical—homMk
SSet.Truncated.Edge.id
CategoryTheory.CategoryStruct.id
SSet.Truncated.HomotopyCategory
CategoryTheory.Category.toCategoryStruct
SSet.Truncated.instCategoryHomotopyCategory
—homMk.eq_1
SSet.OneTruncationā‚‚.reflQuiver_id
CategoryTheory.Cat.FreeRefl.homMk_id
CategoryTheory.Functor.map_id
instFullFreeReflOneTruncationā‚‚QuotientFunctor šŸ“–mathematical—CategoryTheory.Functor.Full
CategoryTheory.Cat.FreeRefl
SSet.OneTruncationā‚‚
SSet.OneTruncationā‚‚.reflQuiver
CategoryTheory.Cat.FreeRefl.instCategory
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
quotientFunctor
—CategoryTheory.Quotient.full_functor
instSubsingletonOfObjOppositeTruncatedOfNatNatOpMkSimplexCategoryLeLenMk šŸ“–mathematical—SSet.Truncated.HomotopyCategory—mk_surjective
lift_map_homMk šŸ“–mathematicalSSet.Truncated.Edge.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
lift
homMk
—CategoryTheory.Category.id_comp
lift_obj_mk šŸ“–mathematicalSSet.Truncated.Edge.id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.obj
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
lift
——
lift_unique' šŸ“–ā€”CategoryTheory.Functor.comp
CategoryTheory.Cat.FreeRefl
SSet.OneTruncationā‚‚
SSet.OneTruncationā‚‚.reflQuiver
CategoryTheory.Cat.FreeRefl.instCategory
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
quotientFunctor
——CategoryTheory.Quotient.lift_unique'
mkNatIso_hom_app_mk šŸ“–mathematical—CategoryTheory.NatTrans.app
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mkNatIso
CategoryTheory.Functor.obj
——
mkNatIso_inv_app_mk šŸ“–mathematical—CategoryTheory.NatTrans.app
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mkNatIso
CategoryTheory.Functor.obj
——
mkNatTrans_app_mk šŸ“–mathematical—CategoryTheory.NatTrans.app
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
mkNatTrans
——
mk_surjective šŸ“–mathematical—CategoryTheory.Functor.obj
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
SSet.Truncated.HomotopyCategory
——
morphismPropertyHomMk_eq_strictMap šŸ“–mathematical—morphismPropertyHomMk
CategoryTheory.MorphismProperty.strictMap
CategoryTheory.Cat.FreeRefl
SSet.OneTruncationā‚‚
SSet.OneTruncationā‚‚.reflQuiver
CategoryTheory.Cat.FreeRefl.instCategory
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.Cat.FreeRefl.morphismPropertyHomMk
quotientFunctor
—CategoryTheory.MorphismProperty.ext
CategoryTheory.MorphismProperty.map_mem_strictMap
morphismPropertyHomMk_of_edge
morphismPropertyHomMk_of_edge šŸ“–mathematical—morphismPropertyHomMk
homMk
—CategoryTheory.MorphismProperty.ofHoms_iff
morphismProperty_eq_top šŸ“–mathematicalhomMkTop.top
CategoryTheory.MorphismProperty
SSet.Truncated.HomotopyCategory
CategoryTheory.Category.toCategoryStruct
SSet.Truncated.instCategoryHomotopyCategory
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
—le_antisymm
multiplicativeClosure_morphismPropertyHomMk
CategoryTheory.MorphismProperty.multiplicativeClosure_le_iff
multiplicativeClosure_morphismPropertyHomMk šŸ“–mathematical—CategoryTheory.MorphismProperty.multiplicativeClosure
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
morphismPropertyHomMk
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
—le_antisymm
CategoryTheory.Functor.map_surjective
instFullFreeReflOneTruncationā‚‚QuotientFunctor
morphismPropertyHomMk_eq_strictMap
CategoryTheory.MorphismProperty.strictMap_multiplicativeClosure_le
CategoryTheory.Cat.FreeRefl.multiplicativeClosure_morphismPropertyHomMk
CategoryTheory.MorphismProperty.map_mem_strictMap
subsingleton_hom šŸ“–mathematical—Quiver.Hom
SSet.Truncated.HomotopyCategory
CategoryTheory.ReflQuiver.toQuiver
CategoryTheory.catToReflQuiver
SSet.Truncated.instCategoryHomotopyCategory
—CategoryTheory.Quotient.instSubsingletonHom
CategoryTheory.Cat.FreeRefl.instSubsingletonHomOfUnique
SSet.Truncated.Edge.instSubsingleton

SSet.hoFunctor

Definitions

NameCategoryTheorems
terminalIso šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
preservesTerminal šŸ“–mathematical—CategoryTheory.Limits.PreservesLimit
SSet
SSet.largeCategory
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
SSet.hoFunctor
—CategoryTheory.Limits.preservesTerminal_of_iso
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
CategoryTheory.Cat.instHasTerminal
preservesTerminal' šŸ“–mathematical—CategoryTheory.Limits.PreservesLimitsOfShape
SSet
SSet.largeCategory
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Discrete
CategoryTheory.discreteCategory
SSet.hoFunctor
—CategoryTheory.Limits.preservesLimitsOfShape_pempty_of_preservesTerminal
preservesTerminal

SSet.hoFunctor.obj

Definitions

NameCategoryTheorems
equiv šŸ“–CompOp—

---

← Back to Index