Documentation Verification Report

HornColimits

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/HornColimits.lean

Statistics

MetricCount
DefinitionsisColimit, ι₀₁, ι₀₂, ι₀₁, ι₁₂, ι₀₂, ι₁₂, desc, multicofork, ι₀, ι₂, ι₃, desc, multicofork, ι₀, ι₁, ι₃
17
TheoremsmulticoequalizerDiagram, isPushout, sq, isPushout, sq, isPushout, sq, multicofork_pt, multicofork_π_three, multicofork_π_three_assoc, multicofork_π_two, multicofork_π_two_assoc, multicofork_π_zero, multicofork_π_zero_assoc, exists_desc, ι₀_desc, ι₀_desc_assoc, ι₂_desc, ι₂_desc_assoc, ι₃_desc, ι₃_desc_assoc, multicofork_pt, multicofork_π_one, multicofork_π_one_assoc, multicofork_π_three, multicofork_π_three_assoc, multicofork_π_zero, multicofork_π_zero_assoc, exists_desc, ι₀_desc, ι₀_desc_assoc, ι₁_desc, ι₁_desc_assoc, ι₃_desc, ι₃_desc_assoc
35
Total52

SSet.horn

Definitions

NameCategoryTheorems
isColimit 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
multicoequalizerDiagram 📖mathematicalSSet.Subcomplex.MulticoequalizerDiagram
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet
SSet.largeCategory
SSet.stdSimplex
SSet.horn
Set.Elem
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
SSet.stdSimplex.face
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
Set.instMembership
Finset.instInsert
SSet.horn_eq_iSup
SSet.stdSimplex.face_inter_face
Finset.compl_insert
Finset.ext

SSet.horn₂₀

Definitions

NameCategoryTheorems
ι₀₁ 📖CompOp
1 mathmath: isPushout
ι₀₂ 📖CompOp
1 mathmath: isPushout

Theorems

NameKindAssumesProvesValidatesDepends On
isPushout 📖mathematicalCategoryTheory.IsPushout
SSet
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.Subcomplex.toSSet
SSet.horn
CategoryTheory.CosimplicialObject.δ
ι₀₁
ι₀₂
CategoryTheory.IsPushout.of_iso'
Lattice.BicartSq.le₁₂
sq
Lattice.BicartSq.le₁₃
Lattice.BicartSq.le₂₄
Lattice.BicartSq.le₃₄
SSet.Subcomplex.BicartSq.isPushout
sq 📖mathematicalSSet.Subcomplex.BicartSq
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet
SSet.largeCategory
SSet.stdSimplex
SSet.stdSimplex.face
Finset
Finset.instSingleton
Finset.instInsert
SSet.horn
le_antisymm
sup_le_iff
SSet.face_le_horn
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
SSet.horn_eq_iSup
iSup_le_iff
Fintype.complete
le_sup_right
le_sup_left
SSet.stdSimplex.face_inter_face
Finset.inter_insert_of_mem
Finset.inter_singleton_of_notMem
Finset.instLawfulSingleton

SSet.horn₂₁

Definitions

NameCategoryTheorems
ι₀₁ 📖CompOp
1 mathmath: isPushout
ι₁₂ 📖CompOp
1 mathmath: isPushout

Theorems

NameKindAssumesProvesValidatesDepends On
isPushout 📖mathematicalCategoryTheory.IsPushout
SSet
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.Subcomplex.toSSet
SSet.horn
CategoryTheory.CosimplicialObject.δ
ι₀₁
ι₁₂
CategoryTheory.IsPushout.of_iso'
Lattice.BicartSq.le₁₂
sq
Lattice.BicartSq.le₁₃
Lattice.BicartSq.le₂₄
Lattice.BicartSq.le₃₄
SSet.Subcomplex.BicartSq.isPushout
sq 📖mathematicalSSet.Subcomplex.BicartSq
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet
SSet.largeCategory
SSet.stdSimplex
SSet.stdSimplex.face
Finset
Finset.instSingleton
Finset.instInsert
SSet.horn
le_antisymm
sup_le_iff
SSet.face_le_horn
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
SSet.horn_eq_iSup
iSup_le_iff
Fintype.complete
le_sup_right
le_sup_left
SSet.stdSimplex.face_inter_face
Finset.inter_insert_of_mem
Finset.inter_singleton_of_notMem
Finset.instLawfulSingleton

SSet.horn₂₂

Definitions

NameCategoryTheorems
ι₀₂ 📖CompOp
1 mathmath: isPushout
ι₁₂ 📖CompOp
1 mathmath: isPushout

Theorems

NameKindAssumesProvesValidatesDepends On
isPushout 📖mathematicalCategoryTheory.IsPushout
SSet
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
SSet.Subcomplex.toSSet
SSet.horn
CategoryTheory.CosimplicialObject.δ
ι₀₂
ι₁₂
CategoryTheory.IsPushout.of_iso'
Lattice.BicartSq.le₁₂
sq
Lattice.BicartSq.le₁₃
Lattice.BicartSq.le₂₄
Lattice.BicartSq.le₃₄
SSet.Subcomplex.BicartSq.isPushout
sq 📖mathematicalSSet.Subcomplex.BicartSq
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet
SSet.largeCategory
SSet.stdSimplex
SSet.stdSimplex.face
Finset
Finset.instSingleton
Finset.instInsert
SSet.horn
le_antisymm
sup_le_iff
SSet.face_le_horn
SSet.horn_eq_iSup
iSup_le_iff
Fintype.complete
le_sup_right
le_sup_left
SSet.stdSimplex.face_inter_face
Finset.inter_insert_of_notMem
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
Finset.inter_singleton_of_mem

SSet.horn₃₁

Definitions

NameCategoryTheorems
desc 📖CompOp
6 mathmath: ι₂_desc_assoc, ι₃_desc_assoc, ι₂_desc, ι₀_desc_assoc, ι₃_desc, ι₀_desc
ι₀ 📖CompOp
3 mathmath: exists_desc, ι₀_desc_assoc, ι₀_desc
ι₂ 📖CompOp
3 mathmath: exists_desc, ι₂_desc_assoc, ι₂_desc
ι₃ 📖CompOp
3 mathmath: exists_desc, ι₃_desc_assoc, ι₃_desc

Theorems

NameKindAssumesProvesValidatesDepends On
exists_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
SSet.Subcomplex.toSSet
SSet.horn
ι₀
ι₂
ι₃
ι₀_desc
ι₂_desc
ι₃_desc
ι₀_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
SSet.Subcomplex.toSSet
SSet.horn
ι₀
desc
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.assoc
SSet.horn.faceSingletonComplIso_inv_ι
CategoryTheory.Limits.IsColimit.fac
SSet.horn.multicoequalizerDiagram
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
ι₀_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
SSet.Subcomplex.toSSet
SSet.horn
ι₀
desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι₀_desc
ι₂_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
SSet.Subcomplex.toSSet
SSet.horn
ι₂
desc
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.assoc
SSet.horn.faceSingletonComplIso_inv_ι
CategoryTheory.Limits.IsColimit.fac
SSet.horn.multicoequalizerDiagram
ι₂_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
SSet.Subcomplex.toSSet
SSet.horn
ι₂
desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι₂_desc
ι₃_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
SSet.Subcomplex.toSSet
SSet.horn
ι₃
desc
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.assoc
SSet.horn.faceSingletonComplIso_inv_ι
CategoryTheory.Limits.IsColimit.fac
SSet.horn.multicoequalizerDiagram
ι₃_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
SSet.Subcomplex.toSSet
SSet.horn
ι₃
desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι₃_desc

SSet.horn₃₁.desc

Definitions

NameCategoryTheorems
multicofork 📖CompOp
7 mathmath: multicofork_π_two, multicofork_pt, multicofork_π_two_assoc, multicofork_π_zero_assoc, multicofork_π_three_assoc, multicofork_π_zero, multicofork_π_three

Theorems

NameKindAssumesProvesValidatesDepends On
multicofork_pt 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.MultispanShape.ofLinearOrder
Set.Elem
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Subtype.instLinearOrder
Fin.instLinearOrder
Set.instMembership
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
CategoryTheory.Limits.MultispanIndex.map
SSet.Subcomplex
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.MultispanIndex.toLinearOrder
CompleteLattice.MulticoequalizerDiagram.multispanIndex
SSet.horn
SSet.stdSimplex.face
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
Finset.instInsert
SSet.horn.multicoequalizerDiagram
SSet.Subcomplex.toSSetFunctor
multicofork
SSet.horn.multicoequalizerDiagram
multicofork_π_three 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
CategoryTheory.Limits.Multicofork.π
CategoryTheory.Limits.MultispanShape.ofLinearOrder
Set.Elem
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Subtype.instLinearOrder
Fin.instLinearOrder
Set.instMembership
CategoryTheory.Limits.MultispanIndex.map
SSet.Subcomplex
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.MultispanIndex.toLinearOrder
CompleteLattice.MulticoequalizerDiagram.multispanIndex
SSet.horn
SSet.stdSimplex.face
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
Finset.instInsert
SSet.horn.multicoequalizerDiagram
SSet.Subcomplex.toSSetFunctor
multicofork
SSet.Subcomplex.toSSet
CategoryTheory.Iso.inv
SSet.stdSimplex.faceSingletonComplIso
SSet.horn.multicoequalizerDiagram
multicofork_π_three_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
CategoryTheory.Limits.MultispanIndex.right
CategoryTheory.Limits.MultispanShape.ofLinearOrder
Set.Elem
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Subtype.instLinearOrder
Fin.instLinearOrder
Set.instMembership
CategoryTheory.Limits.MultispanIndex.map
SSet.Subcomplex
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.MultispanIndex.toLinearOrder
CompleteLattice.MulticoequalizerDiagram.multispanIndex
SSet.horn
SSet.stdSimplex.face
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
Finset.instInsert
SSet.horn.multicoequalizerDiagram
SSet.Subcomplex.toSSetFunctor
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
multicofork
CategoryTheory.Limits.Multicofork.π
CategoryTheory.Iso.inv
SSet.Subcomplex.toSSet
SSet.stdSimplex.faceSingletonComplIso
SSet.horn.multicoequalizerDiagram
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
multicofork_π_three
multicofork_π_two 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
CategoryTheory.Limits.Multicofork.π
CategoryTheory.Limits.MultispanShape.ofLinearOrder
Set.Elem
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Subtype.instLinearOrder
Fin.instLinearOrder
Set.instMembership
CategoryTheory.Limits.MultispanIndex.map
SSet.Subcomplex
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.MultispanIndex.toLinearOrder
CompleteLattice.MulticoequalizerDiagram.multispanIndex
SSet.horn
SSet.stdSimplex.face
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
Finset.instInsert
SSet.horn.multicoequalizerDiagram
SSet.Subcomplex.toSSetFunctor
multicofork
SSet.Subcomplex.toSSet
CategoryTheory.Iso.inv
SSet.stdSimplex.faceSingletonComplIso
SSet.horn.multicoequalizerDiagram
multicofork_π_two_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
CategoryTheory.Limits.MultispanIndex.right
CategoryTheory.Limits.MultispanShape.ofLinearOrder
Set.Elem
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Subtype.instLinearOrder
Fin.instLinearOrder
Set.instMembership
CategoryTheory.Limits.MultispanIndex.map
SSet.Subcomplex
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.MultispanIndex.toLinearOrder
CompleteLattice.MulticoequalizerDiagram.multispanIndex
SSet.horn
SSet.stdSimplex.face
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
Finset.instInsert
SSet.horn.multicoequalizerDiagram
SSet.Subcomplex.toSSetFunctor
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
multicofork
CategoryTheory.Limits.Multicofork.π
CategoryTheory.Iso.inv
SSet.Subcomplex.toSSet
SSet.stdSimplex.faceSingletonComplIso
SSet.horn.multicoequalizerDiagram
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
multicofork_π_two
multicofork_π_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
CategoryTheory.Limits.Multicofork.π
CategoryTheory.Limits.MultispanShape.ofLinearOrder
Set.Elem
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Subtype.instLinearOrder
Fin.instLinearOrder
Set.instMembership
CategoryTheory.Limits.MultispanIndex.map
SSet.Subcomplex
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.MultispanIndex.toLinearOrder
CompleteLattice.MulticoequalizerDiagram.multispanIndex
SSet.horn
SSet.stdSimplex.face
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
Finset.instInsert
SSet.horn.multicoequalizerDiagram
SSet.Subcomplex.toSSetFunctor
multicofork
SSet.Subcomplex.toSSet
CategoryTheory.Iso.inv
SSet.stdSimplex.faceSingletonComplIso
SSet.horn.multicoequalizerDiagram
multicofork_π_zero_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
CategoryTheory.Limits.MultispanIndex.right
CategoryTheory.Limits.MultispanShape.ofLinearOrder
Set.Elem
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Subtype.instLinearOrder
Fin.instLinearOrder
Set.instMembership
CategoryTheory.Limits.MultispanIndex.map
SSet.Subcomplex
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.MultispanIndex.toLinearOrder
CompleteLattice.MulticoequalizerDiagram.multispanIndex
SSet.horn
SSet.stdSimplex.face
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
Finset.instInsert
SSet.horn.multicoequalizerDiagram
SSet.Subcomplex.toSSetFunctor
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
multicofork
CategoryTheory.Limits.Multicofork.π
CategoryTheory.Iso.inv
SSet.Subcomplex.toSSet
SSet.stdSimplex.faceSingletonComplIso
SSet.horn.multicoequalizerDiagram
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
multicofork_π_zero

SSet.horn₃₂

Definitions

NameCategoryTheorems
desc 📖CompOp
6 mathmath: ι₁_desc, ι₃_desc, ι₀_desc, ι₁_desc_assoc, ι₃_desc_assoc, ι₀_desc_assoc
ι₀ 📖CompOp
3 mathmath: exists_desc, ι₀_desc, ι₀_desc_assoc
ι₁ 📖CompOp
3 mathmath: ι₁_desc, exists_desc, ι₁_desc_assoc
ι₃ 📖CompOp
3 mathmath: exists_desc, ι₃_desc, ι₃_desc_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
exists_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
SSet.Subcomplex.toSSet
SSet.horn
ι₀
ι₁
ι₃
ι₀_desc
ι₁_desc
ι₃_desc
ι₀_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
SSet.Subcomplex.toSSet
SSet.horn
ι₀
desc
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.assoc
SSet.horn.faceSingletonComplIso_inv_ι
CategoryTheory.Limits.IsColimit.fac
SSet.horn.multicoequalizerDiagram
ι₀_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
SSet.Subcomplex.toSSet
SSet.horn
ι₀
desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι₀_desc
ι₁_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
SSet.Subcomplex.toSSet
SSet.horn
ι₁
desc
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.assoc
SSet.horn.faceSingletonComplIso_inv_ι
CategoryTheory.Limits.IsColimit.fac
SSet.horn.multicoequalizerDiagram
ι₁_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
SSet.Subcomplex.toSSet
SSet.horn
ι₁
desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι₁_desc
ι₃_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
SSet.Subcomplex.toSSet
SSet.horn
ι₃
desc
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.assoc
SSet.horn.faceSingletonComplIso_inv_ι
CategoryTheory.Limits.IsColimit.fac
SSet.horn.multicoequalizerDiagram
ι₃_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
SSet.Subcomplex.toSSet
SSet.horn
ι₃
desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι₃_desc

SSet.horn₃₂.desc

Definitions

NameCategoryTheorems
multicofork 📖CompOp
7 mathmath: multicofork_π_one, multicofork_π_zero_assoc, multicofork_π_three, multicofork_pt, multicofork_π_zero, multicofork_π_three_assoc, multicofork_π_one_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
multicofork_pt 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.MultispanShape.ofLinearOrder
Set.Elem
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Subtype.instLinearOrder
Fin.instLinearOrder
Set.instMembership
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
CategoryTheory.Limits.MultispanIndex.map
SSet.Subcomplex
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.MultispanIndex.toLinearOrder
CompleteLattice.MulticoequalizerDiagram.multispanIndex
SSet.horn
SSet.stdSimplex.face
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
Finset.instInsert
SSet.horn.multicoequalizerDiagram
SSet.Subcomplex.toSSetFunctor
multicofork
SSet.horn.multicoequalizerDiagram
multicofork_π_one 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
CategoryTheory.Limits.Multicofork.π
CategoryTheory.Limits.MultispanShape.ofLinearOrder
Set.Elem
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Subtype.instLinearOrder
Fin.instLinearOrder
Set.instMembership
CategoryTheory.Limits.MultispanIndex.map
SSet.Subcomplex
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.MultispanIndex.toLinearOrder
CompleteLattice.MulticoequalizerDiagram.multispanIndex
SSet.horn
SSet.stdSimplex.face
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
Finset.instInsert
SSet.horn.multicoequalizerDiagram
SSet.Subcomplex.toSSetFunctor
multicofork
SSet.Subcomplex.toSSet
CategoryTheory.Iso.inv
SSet.stdSimplex.faceSingletonComplIso
SSet.horn.multicoequalizerDiagram
multicofork_π_one_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
CategoryTheory.Limits.MultispanIndex.right
CategoryTheory.Limits.MultispanShape.ofLinearOrder
Set.Elem
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Subtype.instLinearOrder
Fin.instLinearOrder
Set.instMembership
CategoryTheory.Limits.MultispanIndex.map
SSet.Subcomplex
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.MultispanIndex.toLinearOrder
CompleteLattice.MulticoequalizerDiagram.multispanIndex
SSet.horn
SSet.stdSimplex.face
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
Finset.instInsert
SSet.horn.multicoequalizerDiagram
SSet.Subcomplex.toSSetFunctor
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
multicofork
CategoryTheory.Limits.Multicofork.π
CategoryTheory.Iso.inv
SSet.Subcomplex.toSSet
SSet.stdSimplex.faceSingletonComplIso
SSet.horn.multicoequalizerDiagram
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
multicofork_π_one
multicofork_π_three 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
CategoryTheory.Limits.Multicofork.π
CategoryTheory.Limits.MultispanShape.ofLinearOrder
Set.Elem
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Subtype.instLinearOrder
Fin.instLinearOrder
Set.instMembership
CategoryTheory.Limits.MultispanIndex.map
SSet.Subcomplex
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.MultispanIndex.toLinearOrder
CompleteLattice.MulticoequalizerDiagram.multispanIndex
SSet.horn
SSet.stdSimplex.face
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
Finset.instInsert
SSet.horn.multicoequalizerDiagram
SSet.Subcomplex.toSSetFunctor
multicofork
SSet.Subcomplex.toSSet
CategoryTheory.Iso.inv
SSet.stdSimplex.faceSingletonComplIso
SSet.horn.multicoequalizerDiagram
multicofork_π_three_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
CategoryTheory.Limits.MultispanIndex.right
CategoryTheory.Limits.MultispanShape.ofLinearOrder
Set.Elem
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Subtype.instLinearOrder
Fin.instLinearOrder
Set.instMembership
CategoryTheory.Limits.MultispanIndex.map
SSet.Subcomplex
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.MultispanIndex.toLinearOrder
CompleteLattice.MulticoequalizerDiagram.multispanIndex
SSet.horn
SSet.stdSimplex.face
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
Finset.instInsert
SSet.horn.multicoequalizerDiagram
SSet.Subcomplex.toSSetFunctor
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
multicofork
CategoryTheory.Limits.Multicofork.π
CategoryTheory.Iso.inv
SSet.Subcomplex.toSSet
SSet.stdSimplex.faceSingletonComplIso
SSet.horn.multicoequalizerDiagram
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
multicofork_π_three
multicofork_π_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
CategoryTheory.Limits.Multicofork.π
CategoryTheory.Limits.MultispanShape.ofLinearOrder
Set.Elem
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Subtype.instLinearOrder
Fin.instLinearOrder
Set.instMembership
CategoryTheory.Limits.MultispanIndex.map
SSet.Subcomplex
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.MultispanIndex.toLinearOrder
CompleteLattice.MulticoequalizerDiagram.multispanIndex
SSet.horn
SSet.stdSimplex.face
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
Finset.instInsert
SSet.horn.multicoequalizerDiagram
SSet.Subcomplex.toSSetFunctor
multicofork
SSet.Subcomplex.toSSet
CategoryTheory.Iso.inv
SSet.stdSimplex.faceSingletonComplIso
SSet.horn.multicoequalizerDiagram
multicofork_π_zero_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
CategoryTheory.Limits.MultispanIndex.right
CategoryTheory.Limits.MultispanShape.ofLinearOrder
Set.Elem
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Subtype.instLinearOrder
Fin.instLinearOrder
Set.instMembership
CategoryTheory.Limits.MultispanIndex.map
SSet.Subcomplex
Preorder.smallCategory
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.MultispanIndex.toLinearOrder
CompleteLattice.MulticoequalizerDiagram.multispanIndex
SSet.horn
SSet.stdSimplex.face
Finset
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Fin.fintype
Finset.instSingleton
Finset.instInsert
SSet.horn.multicoequalizerDiagram
SSet.Subcomplex.toSSetFunctor
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingMultispan
CategoryTheory.Limits.WalkingMultispan.instSmallCategory
CategoryTheory.Limits.MultispanIndex.multispan
multicofork
CategoryTheory.Limits.Multicofork.π
CategoryTheory.Iso.inv
SSet.Subcomplex.toSSet
SSet.stdSimplex.faceSingletonComplIso
SSet.horn.multicoequalizerDiagram
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
multicofork_π_zero

---

← Back to Index