Documentation Verification Report

MulStruct

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/KanComplex/MulStruct.lean

Statistics

MetricCount
DefinitionsPtSimplex, MulStruct, map, RelStruct, map
5
Theoremsδ_castSucc_castSucc_map, δ_castSucc_castSucc_map_assoc, δ_map_of_gt, δ_map_of_lt, δ_succ_castSucc_map, δ_succ_castSucc_map_assoc, δ_succ_succ_map, δ_succ_succ_map_assoc, δ_castSucc_map, δ_castSucc_map_assoc, δ_map_of_gt, δ_map_of_lt, δ_succ_map, δ_succ_map_assoc
14
Total19

SSet

Definitions

NameCategoryTheorems
PtSimplex 📖CompOp

SSet.PtSimplex

Definitions

NameCategoryTheorems
MulStruct 📖CompData
RelStruct 📖CompData

SSet.PtSimplex.MulStruct

Definitions

NameCategoryTheorems
map 📖CompOp
8 mathmath: δ_map_of_gt, δ_succ_succ_map_assoc, δ_succ_succ_map, δ_succ_castSucc_map, δ_map_of_lt, δ_castSucc_castSucc_map_assoc, δ_succ_castSucc_map_assoc, δ_castSucc_castSucc_map

Theorems

NameKindAssumesProvesValidatesDepends On
δ_castSucc_castSucc_map 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
map
SSet.RelativeMorphism.map
SSet.boundary
SSet.Subcomplex.ofSimplex
SSet.const
SSet.Subcomplex.toSSet
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
δ_castSucc_castSucc_map_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
map
SSet.RelativeMorphism.map
SSet.boundary
SSet.Subcomplex.ofSimplex
SSet.const
SSet.Subcomplex.toSSet
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_castSucc_castSucc_map
δ_map_of_gt 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
map
SSet.const
δ_map_of_lt 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
map
SSet.const
δ_succ_castSucc_map 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
map
SSet.RelativeMorphism.map
SSet.boundary
SSet.Subcomplex.ofSimplex
SSet.const
SSet.Subcomplex.toSSet
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
δ_succ_castSucc_map_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
map
SSet.RelativeMorphism.map
SSet.boundary
SSet.Subcomplex.ofSimplex
SSet.const
SSet.Subcomplex.toSSet
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_succ_castSucc_map
δ_succ_succ_map 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
map
SSet.RelativeMorphism.map
SSet.boundary
SSet.Subcomplex.ofSimplex
SSet.const
SSet.Subcomplex.toSSet
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
δ_succ_succ_map_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
map
SSet.RelativeMorphism.map
SSet.boundary
SSet.Subcomplex.ofSimplex
SSet.const
SSet.Subcomplex.toSSet
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_succ_succ_map

SSet.PtSimplex.RelStruct

Definitions

NameCategoryTheorems
map 📖CompOp
6 mathmath: δ_map_of_lt, δ_castSucc_map, δ_castSucc_map_assoc, δ_succ_map, δ_map_of_gt, δ_succ_map_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
δ_castSucc_map 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
map
SSet.RelativeMorphism.map
SSet.boundary
SSet.Subcomplex.ofSimplex
SSet.const
SSet.Subcomplex.toSSet
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
δ_castSucc_map_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
map
SSet.RelativeMorphism.map
SSet.boundary
SSet.Subcomplex.ofSimplex
SSet.const
SSet.Subcomplex.toSSet
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_castSucc_map
δ_map_of_gt 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
map
SSet.const
δ_map_of_lt 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
map
SSet.const
δ_succ_map 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
map
SSet.RelativeMorphism.map
SSet.boundary
SSet.Subcomplex.ofSimplex
SSet.const
SSet.Subcomplex.toSSet
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
δ_succ_map_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
SSet
CategoryTheory.Category.toCategoryStruct
SSet.largeCategory
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.CosimplicialObject.δ
map
SSet.RelativeMorphism.map
SSet.boundary
SSet.Subcomplex.ofSimplex
SSet.const
SSet.Subcomplex.toSSet
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Set
Set.instMembership
CategoryTheory.Subfunctor.obj
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_succ_map

---

← Back to Index