Documentation Verification Report

Nerve

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/Nerve.lean

Statistics

MetricCount
DefinitionsinstCategoryObjOppositeSimplexCategoryNerve, nerve, edgeMk, homEquiv, representableBy, nerveEquiv, nerveFunctor, nerveMap
8
TheoremsedgeMk_edge, edgeMk_id, edgeMk_surjective, ext_of_isThin, ext_of_isThin_iff, homEquiv_apply, homEquiv_comp, homEquiv_edgeMk, homEquiv_edgeMk_map_nerveMap, homEquiv_id, homEquiv_symm_apply, left_edge, mk₁_homEquiv_apply, nonempty_compStruct_iff, right_edge, δ_obj, δ₀_eq, δ₀_mk₂_eq, δ₁_mk₂_eq, δ₂_mk₂_eq, δ₂_two, δ₂_zero, σ_obj, σ_zero_nerveEquiv_symm, σ₀_mk₀_eq, nerveFunctor_map, nerveFunctor_obj, nerveMap_app, nerveMap_app_mk₀, nerveMap_app_mk₁, nerve_map, nerve_obj
32
Total40

CategoryTheory

Definitions

NameCategoryTheorems
instCategoryObjOppositeSimplexCategoryNerve 📖CompOp
nerve 📖CompOp
56 mathmath: SSet.OneTruncation₂.nerveEquiv_apply, nerve.edgeMk_edge, nerve.σ_obj, SSet.OneTruncation₂.ofNerve₂.natIso_hom_app_map, Nerve.instIsCoskeletalNerveOfNatNat, SSet.Truncated.HomotopyCategory.descOfTruncation_comp, nerve.δ₂_zero, SSet.OneTruncation₂.nerveHomEquiv_id, nerve.functorOfNerveMap_map, nerve.homEquiv_edgeMk_map_nerveMap, Nerve.isStrictSegal, nerve.homEquiv_apply, nerve.edgeMk_id, nerve.right_edge, nerve.homEquiv_edgeMk, nerve.nonempty_compStruct_iff, PartialOrder.mem_nerve_degenerate_of_eq, PartialOrder.mem_nerve_nonDegenerate_iff_injective, nerve.homEquiv_comp, nerve.left_edge, nerve.mk₁_homEquiv_apply, nerveMap_app_mk₁, SSet.OneTruncation₂.ofNerve₂.natIso_hom_app_obj, SSet.OneTruncation₂.nerveEquiv_symm_apply_map, SSet.stdSimplex.isoNerve_hom_app_apply, PartialOrder.mem_range_nerve_σ_iff, nerve.homEquiv_id, SSet.Truncated.HomotopyCategory.descOfTruncation_map_homMk, nerve.δ₁_mk₂_eq, PartialOrder.mem_nerve_nonDegenerate_iff_strictMono, SSet.Truncated.HomotopyCategory.homToNerveMk_app_one, Nerve.quasicategory, nerve.σ₀_mk₀_eq, nerve_map, nerve.δ_obj, nerve.δ₂_mk₂_eq, nerve_obj, nerve.σ_zero_nerveEquiv_symm, SSet.Truncated.HomotopyCategory.homToNerveMk_app_edge, SSet.OneTruncation₂.ofNerve₂.natIso_inv_app_map, SSet.OneTruncation₂.nerveEquiv_symm_apply_obj, hoFunctor.instIsIsoCatProdComparisonSSetHoFunctorNerve, nerveFunctor_obj, SSet.OneTruncation₂.nerveHomEquiv_apply, SSet.Truncated.HomotopyCategory.homToNerveMk_app_zero, SSet.Truncated.HomotopyCategory.homToNerveMk_comp, nerveMap_app, nerve.δ₀_eq, nerve.δ₀_mk₂_eq, SSet.Truncated.HomotopyCategory.descOfTruncation_obj_mk, nerveMap_app_mk₀, SSet.Truncated.HomotopyCategory.homToNerveMk_comp_assoc, nerve.δ₂_two, nerve.edgeMk_surjective, SSet.stdSimplex.isoNerve_inv_app_apply, nerve.homEquiv_symm_apply
nerveEquiv 📖CompOp
19 mathmath: nerve.edgeMk_edge, nerve.functorOfNerveMap_map, nerve.homEquiv_edgeMk_map_nerveMap, nerve.homEquiv_apply, nerve.edgeMk_id, nerve.right_edge, nerve.homEquiv_edgeMk, nerve.nonempty_compStruct_iff, nerve.homEquiv_comp, nerve.left_edge, nerve.mk₁_homEquiv_apply, nerve.homEquiv_id, SSet.Truncated.HomotopyCategory.descOfTruncation_map_homMk, nerve.σ_zero_nerveEquiv_symm, SSet.Truncated.HomotopyCategory.homToNerveMk_app_zero, nerve.functorOfNerveMap_obj, SSet.Truncated.HomotopyCategory.descOfTruncation_obj_mk, nerve.edgeMk_surjective, nerve.homEquiv_symm_apply
nerveFunctor 📖CompOp
7 mathmath: nerveFunctor.faithful, nerveFunctor_map, nerveFunctor.full, nerve.functorOfNerveMap_nerveFunctor₂_map, nerveFunctor_obj, instIsIsoSSetProdComparisonCatCompNerveFunctorHoFunctorOf, nerveAdjunction.isIso_counit
nerveMap 📖CompOp
9 mathmath: nerve.homEquiv_edgeMk_map_nerveMap, nerveMap_app_mk₁, SimplicialThickening.functor_map, nerveFunctor_map, nerve.functorOfNerveMap_nerveFunctor₂_map, SSet.Truncated.HomotopyCategory.homToNerveMk_comp, nerveMap_app, nerveMap_app_mk₀, SSet.Truncated.HomotopyCategory.homToNerveMk_comp_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
nerveFunctor_map 📖mathematicalFunctor.map
Cat
Cat.category
SSet
SSet.largeCategory
nerveFunctor
nerveMap
Bundled.α
Category
Cat.str
Cat.Hom.toFunctor
nerveFunctor_obj 📖mathematicalFunctor.obj
Cat
Cat.category
SSet
SSet.largeCategory
nerveFunctor
nerve
Bundled.α
Category
Cat.str
nerveMap_app 📖mathematicalNatTrans.app
Opposite
SimplexCategory
Category.opposite
SimplexCategory.smallCategory
types
nerve
nerveMap
Functor.obj
ComposableArrows
SimplexCategory.len
Opposite.unop
Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
Functor.mapComposableArrows
nerveMap_app_mk₀ 📖mathematicalNatTrans.app
Opposite
SimplexCategory
Category.opposite
SimplexCategory.smallCategory
types
nerve
nerveMap
Opposite.op
ComposableArrows.mk₀
Functor.obj
ComposableArrows.ext₀
nerveMap_app_mk₁ 📖mathematicalNatTrans.app
Opposite
SimplexCategory
Category.opposite
SimplexCategory.smallCategory
types
nerve
nerveMap
Opposite.op
ComposableArrows.mk₁
Functor.obj
Functor.map
ComposableArrows.ext₁
Category.comp_id
Category.id_comp
nerve_map 📖mathematicalFunctor.map
Opposite
SimplexCategory
Category.opposite
SimplexCategory.smallCategory
types
nerve
ComposableArrows.whiskerLeft
SimplexCategory.len
Opposite.unop
Cat.Hom.toFunctor
Functor.obj
Cat
Cat.category
SimplexCategory.toCat
Quiver.Hom.unop
CategoryStruct.toQuiver
Category.toCategoryStruct
nerve_obj 📖mathematicalFunctor.obj
Opposite
SimplexCategory
Category.opposite
SimplexCategory.smallCategory
types
nerve
ComposableArrows
SimplexCategory.len
Opposite.unop

CategoryTheory.nerve

Definitions

NameCategoryTheorems
edgeMk 📖CompOp
7 mathmath: edgeMk_edge, functorOfNerveMap_map, homEquiv_edgeMk_map_nerveMap, edgeMk_id, homEquiv_edgeMk, nonempty_compStruct_iff, edgeMk_surjective
homEquiv 📖CompOp
9 mathmath: functorOfNerveMap_map, homEquiv_edgeMk_map_nerveMap, homEquiv_apply, homEquiv_edgeMk, homEquiv_comp, mk₁_homEquiv_apply, homEquiv_id, SSet.Truncated.HomotopyCategory.descOfTruncation_map_homMk, homEquiv_symm_apply
representableBy 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
edgeMk_edge 📖mathematicalSSet.Edge.edge
CategoryTheory.nerve
DFunLike.coe
Equiv
CategoryTheory.ComposableArrows
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.nerveEquiv
edgeMk
CategoryTheory.ComposableArrows.mk₁
edgeMk_id 📖mathematicaledgeMk
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
SSet.Edge.id
CategoryTheory.nerve
DFunLike.coe
Equiv
CategoryTheory.ComposableArrows
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.nerveEquiv
SSet.Edge.ext
CategoryTheory.ComposableArrows.ext₁
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
edgeMk_surjective 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SSet.Edge
CategoryTheory.nerve
DFunLike.coe
Equiv
CategoryTheory.ComposableArrows
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.nerveEquiv
edgeMk
Equiv.apply_symm_apply
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
SSet.Edge.ext
CategoryTheory.ComposableArrows.ext₁
right_edge
ext_of_isThin 📖Quiver.IsThin
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory.len
Opposite.unop
SimplexCategory
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.ext
ext_of_isThin_iff 📖mathematicalQuiver.IsThin
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory.len
Opposite.unop
SimplexCategory
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
ext_of_isThin
homEquiv_apply 📖mathematicalDFunLike.coe
Equiv
SSet.Edge
CategoryTheory.nerve
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ComposableArrows
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.nerveEquiv
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.ComposableArrows.left
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite.op
SSet.Edge.edge
CategoryTheory.eqToHom
CategoryTheory.ComposableArrows.right
CategoryTheory.ComposableArrows.hom
homEquiv_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
DFunLike.coe
Equiv
CategoryTheory.ComposableArrows
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.nerveEquiv
SSet.Edge
CategoryTheory.nerve
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
homEquiv
Equiv.surjective
edgeMk_surjective
homEquiv_edgeMk
nonempty_compStruct_iff
homEquiv_edgeMk 📖mathematicalDFunLike.coe
Equiv
SSet.Edge
CategoryTheory.nerve
CategoryTheory.ComposableArrows
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.nerveEquiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
homEquiv
edgeMk
Equiv.injective
Equiv.symm_apply_apply
homEquiv_edgeMk_map_nerveMap 📖mathematicalDFunLike.coe
Equiv
SSet.Edge
CategoryTheory.nerve
CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
CategoryTheory.nerveMap
Opposite.op
CategoryTheory.ComposableArrows
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.nerveEquiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
homEquiv
SSet.Edge.map
edgeMk
CategoryTheory.Functor.map
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
homEquiv_id 📖mathematicalDFunLike.coe
Equiv
SSet.Edge
CategoryTheory.nerve
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ComposableArrows
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.nerveEquiv
homEquiv
SSet.Edge.id
CategoryTheory.CategoryStruct.id
Equiv.surjective
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
homEquiv_symm_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ComposableArrows
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.nerveEquiv
SSet.Edge
CategoryTheory.nerve
Equiv.symm
homEquiv
CategoryTheory.ComposableArrows.mk₁
left_edge 📖mathematicalCategoryTheory.ComposableArrows.left
SSet.Edge.edge
CategoryTheory.nerve
DFunLike.coe
Equiv
CategoryTheory.ComposableArrows
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.nerveEquiv
SSet.Edge.src_eq
mk₁_homEquiv_apply 📖mathematicalCategoryTheory.ComposableArrows.mk₁
DFunLike.coe
Equiv
CategoryTheory.ComposableArrows
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.nerveEquiv
SSet.Edge
CategoryTheory.nerve
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
homEquiv
CategoryTheory.ComposableArrows.left
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite.op
SSet.Edge.edge
CategoryTheory.ComposableArrows.right
CategoryTheory.ComposableArrows.hom
CategoryTheory.ComposableArrows.mk₁_eqToHom_comp
CategoryTheory.ComposableArrows.mk₁_comp_eqToHom
nonempty_compStruct_iff 📖mathematicalSSet.Edge.CompStruct
CategoryTheory.nerve
DFunLike.coe
Equiv
CategoryTheory.ComposableArrows
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.nerveEquiv
edgeMk
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ComposableArrows.ext₁
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
Equiv.injective
SSet.Edge.CompStruct.d₁
SSet.Edge.CompStruct.d₀
SSet.Edge.CompStruct.d₂
CategoryTheory.ComposableArrows.ext₂_of_arrow
δ₂_two
δ₂_zero
right_edge 📖mathematicalCategoryTheory.ComposableArrows.right
SSet.Edge.edge
CategoryTheory.nerve
DFunLike.coe
Equiv
CategoryTheory.ComposableArrows
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.nerveEquiv
SSet.Edge.tgt_eq
δ_obj 📖mathematicalCategoryTheory.Functor.obj
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite.op
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.SimplicialObject.δ
CategoryTheory.types
CategoryTheory.nerve
Fin.succAbove
δ₀_eq 📖mathematicalCategoryTheory.SimplicialObject.δ
CategoryTheory.types
CategoryTheory.nerve
CategoryTheory.ComposableArrows.δ₀
δ₀_mk₂_eq 📖mathematicalCategoryTheory.SimplicialObject.δ
CategoryTheory.types
CategoryTheory.nerve
CategoryTheory.ComposableArrows.mk₂
CategoryTheory.ComposableArrows.mk₁
CategoryTheory.ComposableArrows.ext₁
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
δ₁_mk₂_eq 📖mathematicalCategoryTheory.SimplicialObject.δ
CategoryTheory.types
CategoryTheory.nerve
CategoryTheory.ComposableArrows.mk₂
CategoryTheory.ComposableArrows.mk₁
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ComposableArrows.ext₁
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
δ₂_mk₂_eq 📖mathematicalCategoryTheory.SimplicialObject.δ
CategoryTheory.types
CategoryTheory.nerve
CategoryTheory.ComposableArrows.mk₂
CategoryTheory.ComposableArrows.mk₁
CategoryTheory.ComposableArrows.ext₁
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
δ₂_two 📖mathematicalCategoryTheory.SimplicialObject.δ
CategoryTheory.types
CategoryTheory.nerve
CategoryTheory.ComposableArrows.mk₁
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.map'
CategoryTheory.ComposableArrows.ext₁
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
δ₂_zero 📖mathematicalCategoryTheory.SimplicialObject.δ
CategoryTheory.types
CategoryTheory.nerve
CategoryTheory.ComposableArrows.mk₁
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.map'
CategoryTheory.ComposableArrows.ext₁
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
σ_obj 📖mathematicalCategoryTheory.Functor.obj
SimplexCategory.len
Opposite.unop
SimplexCategory
Opposite.op
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.SimplicialObject.σ
CategoryTheory.types
CategoryTheory.nerve
Fin.predAbove
σ_zero_nerveEquiv_symm 📖mathematicalCategoryTheory.SimplicialObject.σ
CategoryTheory.types
CategoryTheory.nerve
DFunLike.coe
Equiv
CategoryTheory.ComposableArrows
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.nerveEquiv
CategoryTheory.ComposableArrows.mk₁
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ComposableArrows.ext₁
CategoryTheory.Category.comp_id
σ₀_mk₀_eq 📖mathematicalCategoryTheory.SimplicialObject.σ
CategoryTheory.types
CategoryTheory.nerve
CategoryTheory.ComposableArrows.mk₀
CategoryTheory.ComposableArrows.mk₁
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ComposableArrows.ext₁
CategoryTheory.Category.comp_id

---

← Back to Index