Documentation Verification Report

NerveAdjunction

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/NerveAdjunction.lean

Statistics

MetricCount
DefinitionsinstReflectiveSSetCatNerveFunctor, fullyFaithfulNerveFunctor₂, functorOfNerveMap, instReflectiveTruncatedOfNatNatCatNerveFunctor₂, nerveAdjunction, fullyfaithful, nerveFunctorCompHoFunctorIso, descOfTruncation, functorEquiv, homToNerveMk, liftOfStrictSegal, app, f₂, naturalityProperty, nerve₂Adj
15
TheoremsinstIsIsoCatProdComparisonSSetHoFunctorNerve, instIsLeftAdjointSSetCatHoFunctor, isIso_prodComparison, isIso_prodComparison_of_stdSimplex, isIso_prodComparison_stdSimplex, preservesBinaryProduct, preservesBinaryProducts, preservesFiniteProducts, instIsIsoSSetProdComparisonCatCompNerveFunctorHoFunctorOf, functorOfNerveMap_map, functorOfNerveMap_nerveFunctor₂_map, functorOfNerveMap_obj, instFaithfulCatTruncatedOfNatNatNerveFunctor₂, instFullCatTruncatedOfNatNatNerveFunctor₂, nerveFunctor₂_map_functorOfNerveMap, isIso_counit, faithful, full, descOfTruncation_comp, descOfTruncation_map_homMk, descOfTruncation_obj_mk, homToNerveMk_app_edge, homToNerveMk_app_one, homToNerveMk_app_zero, homToNerveMk_comp, homToNerveMk_comp_assoc, hδ'₀, hδ'₁, hδ'₂, hσ'₀, hσ'₁, naturalityProperty_eq_top, spineEquiv_f₂_arrow_one, spineEquiv_f₂_arrow_zero, liftOfStrictSegal_app_0, liftOfStrictSegal_app_1
36
Total51

CategoryTheory

Definitions

NameCategoryTheorems
instReflectiveSSetCatNerveFunctor 📖CompOp—
nerveAdjunction 📖CompOp
1 mathmath: nerveAdjunction.isIso_counit
nerveFunctorCompHoFunctorIso 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
instIsIsoSSetProdComparisonCatCompNerveFunctorHoFunctorOf 📖mathematical—IsIso
SSet
SSet.largeCategory
Functor.obj
Cat
Cat.category
Functor.comp
nerveFunctor
SSet.hoFunctor
Limits.prod
Cat.of
Limits.hasLimitOfHasLimitsOfShape
Discrete
Limits.WalkingPair
discreteCategory
Limits.hasLimitsOfShape_discrete
CartesianMonoidalCategory.instHasFiniteProducts
Cat.instCartesianMonoidalCategory
Finite.of_fintype
Limits.fintypeWalkingPair
Limits.pair
SSet.instCartesianMonoidalCategory
Limits.prodComparison
—IsIso.of_isIso_fac_right
Limits.instHasBinaryProductObjOfPreservesLimitDiscreteWalkingPairPair
Limits.hasLimitOfHasLimitsOfShape
Limits.hasLimitsOfShape_discrete
CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
Limits.PreservesLimitsOfShape.preservesLimit
Limits.PreservesFiniteLimits.preservesFiniteLimits
Limits.PreservesLimits.preservesFiniteLimits
Functor.instPreservesLimitsOfSizeOfIsRightAdjoint
instIsRightAdjointOfReflective
Limits.isIso_prod
NatIso.hom_app_isIso
IsIso.comp_isIso
Limits.instIsIsoProdComparison
Limits.prodComparison_natural_of_natTrans

CategoryTheory.hoFunctor

Theorems

NameKindAssumesProvesValidatesDepends On
instIsIsoCatProdComparisonSSetHoFunctorNerve 📖mathematical—CategoryTheory.IsIso
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.hoFunctor
CategoryTheory.Limits.prod
CategoryTheory.nerve
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
SSet.instCartesianMonoidalCategory
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
CategoryTheory.Cat.instCartesianMonoidalCategory
CategoryTheory.Limits.prodComparison
—CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
CategoryTheory.IsIso.of_isIso_fac_left
CategoryTheory.Limits.instHasBinaryProductObjOfPreservesLimitDiscreteWalkingPairPair
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.Functor.instPreservesLimitsOfSizeOfIsRightAdjoint
CategoryTheory.instIsRightAdjointOfReflective
CategoryTheory.Functor.map_isIso
CategoryTheory.Limits.instIsIsoProdComparison
CategoryTheory.instIsIsoSSetProdComparisonCatCompNerveFunctorHoFunctorOf
CategoryTheory.Limits.prodComparison_comp
CategoryTheory.IsIso.of_isIso_fac_right
CategoryTheory.isIso_of_fully_faithful
CategoryTheory.nerveFunctor.full
CategoryTheory.nerveFunctor.faithful
instIsLeftAdjointSSetCatHoFunctor 📖mathematical—CategoryTheory.Functor.IsLeftAdjoint
SSet
SSet.largeCategory
CategoryTheory.Cat
CategoryTheory.Cat.category
SSet.hoFunctor
—CategoryTheory.Adjunction.isLeftAdjoint
isIso_prodComparison 📖mathematical—CategoryTheory.IsIso
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.hoFunctor
CategoryTheory.Limits.prod
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
SSet.instCartesianMonoidalCategory
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
CategoryTheory.Cat.instCartesianMonoidalCategory
CategoryTheory.Limits.prodComparison
—isIso_prodComparison_of_stdSimplex
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
CategoryTheory.Limits.prod.hom_ext
CategoryTheory.Cat.ext
CategoryTheory.Limits.prodComparison_fst
CategoryTheory.Limits.prod.comp_lift
CategoryTheory.Limits.prodComparison_snd
CategoryTheory.Limits.limit.lift_π
isIso_prodComparison_stdSimplex
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Iso.isIso_hom
isIso_prodComparison_of_stdSimplex 📖—CategoryTheory.IsIso
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.hoFunctor
CategoryTheory.Limits.prod
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
SSet.instCartesianMonoidalCategory
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
CategoryTheory.Cat.instCartesianMonoidalCategory
CategoryTheory.Limits.prodComparison
——CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
CategoryTheory.NatTrans.isIso_iff_isIso_app
CategoryTheory.Limits.isIso_app_coconePt_of_preservesColimit
CategoryTheory.Limits.comp_preservesColimit
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Functor.instPreservesColimitsOfShapeOfIsLeftAdjoint
CategoryTheory.CartesianMonoidalCategory.isLeftAdjoint_prod_functor
instIsLeftAdjointSSetCatHoFunctor
isIso_prodComparison_stdSimplex 📖mathematical—CategoryTheory.IsIso
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.hoFunctor
CategoryTheory.Limits.prod
SimplexCategory
SimplexCategory.smallCategory
SSet.stdSimplex
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
SSet.instCartesianMonoidalCategory
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.pair
CategoryTheory.Cat.instCartesianMonoidalCategory
CategoryTheory.Limits.prodComparison
—CategoryTheory.IsIso.of_isIso_fac_right
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
CategoryTheory.Limits.isIso_prod
CategoryTheory.Functor.map_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.IsIso.comp_isIso
instIsIsoCatProdComparisonSSetHoFunctorNerve
CategoryTheory.Limits.prodComparison_natural
preservesBinaryProduct 📖mathematical—CategoryTheory.Limits.PreservesLimit
SSet
SSet.largeCategory
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
SSet.hoFunctor
—CategoryTheory.Limits.PreservesLimitPair.of_iso_prod_comparison
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts
Finite.of_fintype
isIso_prodComparison
preservesBinaryProducts 📖mathematical—CategoryTheory.Limits.PreservesLimitsOfShape
SSet
SSet.largeCategory
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
SSet.hoFunctor
—CategoryTheory.Limits.preservesLimit_of_iso_diagram
preservesBinaryProduct
preservesFiniteProducts 📖mathematical—CategoryTheory.Limits.PreservesFiniteProducts
SSet
SSet.largeCategory
CategoryTheory.Cat
CategoryTheory.Cat.category
SSet.hoFunctor
—CategoryTheory.Limits.PreservesFiniteProducts.of_preserves_binary_and_terminal
preservesBinaryProducts
SSet.hoFunctor.preservesTerminal'
CategoryTheory.CartesianMonoidalCategory.instHasFiniteProducts

CategoryTheory.nerve

Definitions

NameCategoryTheorems
fullyFaithfulNerveFunctor₂ 📖CompOp—
functorOfNerveMap 📖CompOp
4 mathmath: functorOfNerveMap_map, functorOfNerveMap_nerveFunctor₂_map, functorOfNerveMap_obj, nerveFunctor₂_map_functorOfNerveMap
instReflectiveTruncatedOfNatNatCatNerveFunctor₂ 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
functorOfNerveMap_map 📖mathematical—CategoryTheory.Functor.map
functorOfNerveMap
DFunLike.coe
Equiv
SSet.Edge
CategoryTheory.nerve
CategoryTheory.Cat.str
CategoryTheory.Cat.of
CategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.Nerve.nerveFunctor₂
Opposite.op
CategoryTheory.Bundled.Îą
CategoryTheory.Category
CategoryTheory.ComposableArrows
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.nerveEquiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
homEquiv
SSet.Truncated.Edge.map
SSet
SSet.largeCategory
SSet.truncation
SSet.Edge.toTruncated
edgeMk
——
functorOfNerveMap_nerveFunctor₂_map 📖mathematical—functorOfNerveMap
CategoryTheory.Functor.map
SSet
SSet.largeCategory
SSet.Truncated
SSet.Truncated.largeCategory
SSet.truncation
CategoryTheory.Functor.obj
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.nerveFunctor
CategoryTheory.Cat.of
CategoryTheory.nerveMap
CategoryTheory.Bundled.Îą
CategoryTheory.Category
CategoryTheory.Cat.str
—CategoryTheory.Functor.ext
functorOfNerveMap_obj 📖mathematical—CategoryTheory.Functor.obj
functorOfNerveMap
DFunLike.coe
Equiv
CategoryTheory.ComposableArrows
CategoryTheory.Cat.str
CategoryTheory.Cat.of
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.nerveEquiv
CategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
CategoryTheory.Cat
CategoryTheory.Cat.category
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.Nerve.nerveFunctor₂
Opposite.op
CategoryTheory.Bundled.Îą
CategoryTheory.Category
Equiv.symm
——
instFaithfulCatTruncatedOfNatNatNerveFunctor₂ 📖mathematical—CategoryTheory.Functor.Faithful
CategoryTheory.Cat
CategoryTheory.Cat.category
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.Nerve.nerveFunctor₂
—CategoryTheory.Functor.FullyFaithful.faithful
instFullCatTruncatedOfNatNatNerveFunctor₂ 📖mathematical—CategoryTheory.Functor.Full
CategoryTheory.Cat
CategoryTheory.Cat.category
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.Nerve.nerveFunctor₂
—CategoryTheory.Functor.FullyFaithful.full
nerveFunctor₂_map_functorOfNerveMap 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.Cat
CategoryTheory.Cat.category
SSet.Truncated
SSet.Truncated.largeCategory
CategoryTheory.Nerve.nerveFunctor₂
CategoryTheory.Cat.of
CategoryTheory.Functor.toCatHom
functorOfNerveMap
—SSet.Truncated.IsStrictSegal.hom_ext
CategoryTheory.Nerve.instIsStrictSegalObjCatTruncatedOfNatNatNerveFunctor₂
CategoryTheory.ComposableArrows.mk₁_surjective
CategoryTheory.nerveMap_app_mk₁
mk₁_homEquiv_apply
CategoryTheory.ComposableArrows.mk₁_hom

CategoryTheory.nerveAdjunction

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_counit 📖mathematical—CategoryTheory.IsIso
CategoryTheory.Functor
CategoryTheory.Cat
CategoryTheory.Cat.category
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
SSet
SSet.largeCategory
CategoryTheory.nerveFunctor
SSet.hoFunctor
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
CategoryTheory.nerveAdjunction
—CategoryTheory.Adjunction.counit_isIso_of_R_fully_faithful
CategoryTheory.nerveFunctor.full
CategoryTheory.nerveFunctor.faithful

CategoryTheory.nerveFunctor

Definitions

NameCategoryTheorems
fullyfaithful 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
faithful 📖mathematical—CategoryTheory.Functor.Faithful
CategoryTheory.Cat
CategoryTheory.Cat.category
SSet
SSet.largeCategory
CategoryTheory.nerveFunctor
—CategoryTheory.Functor.Faithful.of_iso
CategoryTheory.Functor.Faithful.comp
CategoryTheory.nerve.instFaithfulCatTruncatedOfNatNatNerveFunctor₂
SSet.Truncated.cosk.faithful
full 📖mathematical—CategoryTheory.Functor.Full
CategoryTheory.Cat
CategoryTheory.Cat.category
SSet
SSet.largeCategory
CategoryTheory.nerveFunctor
—CategoryTheory.Functor.Full.of_iso
CategoryTheory.Functor.Full.comp
CategoryTheory.nerve.instFullCatTruncatedOfNatNatNerveFunctor₂
SSet.Truncated.cosk.full

SSet.Truncated

Definitions

NameCategoryTheorems
liftOfStrictSegal 📖CompOp
2 mathmath: liftOfStrictSegal_app_0, liftOfStrictSegal_app_1
nerve₂Adj 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
liftOfStrictSegal_app_0 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.δ₂
SimplexCategory.Truncated.σ₂
CategoryTheory.NatTrans.app
liftOfStrictSegal
——
liftOfStrictSegal_app_1 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.δ₂
SimplexCategory.Truncated.σ₂
CategoryTheory.NatTrans.app
liftOfStrictSegal
——

SSet.Truncated.HomotopyCategory

Definitions

NameCategoryTheorems
descOfTruncation 📖CompOp
3 mathmath: descOfTruncation_comp, descOfTruncation_map_homMk, descOfTruncation_obj_mk
functorEquiv 📖CompOp—
homToNerveMk 📖CompOp
5 mathmath: homToNerveMk_app_one, homToNerveMk_app_edge, homToNerveMk_app_zero, homToNerveMk_comp, homToNerveMk_comp_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
descOfTruncation_comp 📖mathematical—descOfTruncation
CategoryTheory.CategoryStruct.comp
SSet.Truncated
CategoryTheory.Category.toCategoryStruct
SSet.Truncated.largeCategory
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.truncation
CategoryTheory.nerve
CategoryTheory.Functor.comp
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
SSet.Truncated.mapHomotopyCategory
—functor_ext
descOfTruncation_map_homMk
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
EquivLike.toEmbeddingLike
descOfTruncation_map_homMk 📖mathematical—CategoryTheory.Functor.map
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
descOfTruncation
homMk
DFunLike.coe
Equiv
SSet.Edge
CategoryTheory.nerve
CategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.Truncated
SSet.Truncated.largeCategory
SSet.truncation
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ComposableArrows
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.nerveEquiv
CategoryTheory.nerve.homEquiv
SSet.Truncated.Edge.map
—CategoryTheory.Category.id_comp
descOfTruncation_obj_mk 📖mathematical—CategoryTheory.Functor.obj
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
descOfTruncation
DFunLike.coe
Equiv
CategoryTheory.ComposableArrows
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.nerveEquiv
CategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
SSet
SSet.largeCategory
SSet.Truncated
SSet.Truncated.largeCategory
SSet.truncation
CategoryTheory.nerve
Opposite.op
——
homToNerveMk_app_edge 📖mathematical—CategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.Truncated
SSet.Truncated.largeCategory
SSet.truncation
CategoryTheory.nerve
homToNerveMk
Opposite.op
SSet.Truncated.Edge.edge
CategoryTheory.ComposableArrows.mk₁
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.Functor.map
homMk
—homToNerveMk_app_one
Equiv.injective
congr_arrowMk_homMk
homToNerveMk_app_one 📖mathematical—CategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.Truncated
SSet.Truncated.largeCategory
SSet.truncation
CategoryTheory.nerve
homToNerveMk
Opposite.op
CategoryTheory.ComposableArrows.mk₁
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.Functor.map
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.δ₂
homMk
SSet.Truncated.Edge.mk'
——
homToNerveMk_app_zero 📖mathematical—CategoryTheory.NatTrans.app
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.Truncated
SSet.Truncated.largeCategory
SSet.truncation
CategoryTheory.nerve
homToNerveMk
Opposite.op
DFunLike.coe
Equiv
CategoryTheory.ComposableArrows
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.nerveEquiv
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
——
homToNerveMk_comp 📖mathematical—homToNerveMk
CategoryTheory.Functor.comp
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.CategoryStruct.comp
SSet.Truncated
CategoryTheory.Category.toCategoryStruct
SSet.Truncated.largeCategory
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.truncation
CategoryTheory.nerve
CategoryTheory.Functor.map
CategoryTheory.nerveMap
—SSet.Truncated.IsStrictSegal.hom_ext
SSet.StrictSegal.instIsStrictSegalObjTruncatedHAddNatOfNatTruncationOfIsStrictSegal
CategoryTheory.Nerve.isStrictSegal
SSet.Truncated.Edge.exists_of_simplex
homToNerveMk_app_edge
CategoryTheory.ComposableArrows.ext₁
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
homToNerveMk_comp_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
SSet.Truncated
CategoryTheory.Category.toCategoryStruct
SSet.Truncated.largeCategory
CategoryTheory.Functor.obj
SSet
SSet.largeCategory
SSet.truncation
CategoryTheory.nerve
homToNerveMk
CategoryTheory.Functor.comp
SSet.Truncated.HomotopyCategory
SSet.Truncated.instCategoryHomotopyCategory
CategoryTheory.Functor.map
CategoryTheory.nerveMap
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homToNerveMk_comp

SSet.Truncated.liftOfStrictSegal

Definitions

NameCategoryTheorems
app 📖CompOp—
f₂ 📖CompOp
7 mathmath: hδ'₂, hσ'₀, hδ'₁, hδ'₀, hσ'₁, spineEquiv_f₂_arrow_one, spineEquiv_f₂_arrow_zero
naturalityProperty 📖CompOp
1 mathmath: naturalityProperty_eq_top

Theorems

NameKindAssumesProvesValidatesDepends On
hδ'₀ 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.δ₂
f₂—spineEquiv_f₂_arrow_one
SimplexCategory.mkOfSucc_one_eq_δ
hδ'₁ 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.δ₂
f₂—hδ'₂
hδ'₀
hδ'₂ 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.δ₂
f₂—spineEquiv_f₂_arrow_zero
SimplexCategory.mkOfSucc_zero_eq_δ
hσ'₀ 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.δ₂
SimplexCategory.Truncated.σ₂
f₂—Equiv.injective
SSet.Truncated.Path.ext'
Fintype.complete
spineEquiv_f₂_arrow_zero
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
SimplexCategory.Truncated.δ₂_two_comp_σ₂_zero
SimplexCategory.mkOfSucc_zero_eq_δ
spineEquiv_f₂_arrow_one
SimplexCategory.Truncated.δ₂_zero_comp_σ₂_zero
CategoryTheory.FunctorToTypes.map_id_apply
SimplexCategory.mkOfSucc_one_eq_δ
hσ'₁ 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.δ₂
SimplexCategory.Truncated.σ₂
f₂—Equiv.injective
SSet.Truncated.Path.ext'
Fintype.complete
spineEquiv_f₂_arrow_zero
SimplexCategory.Truncated.δ₂_two_comp_σ₂_one
CategoryTheory.FunctorToTypes.map_id_apply
SimplexCategory.mkOfSucc_zero_eq_δ
spineEquiv_f₂_arrow_one
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
SimplexCategory.Truncated.δ₂_zero_comp_σ₂_one
SimplexCategory.mkOfSucc_one_eq_δ
naturalityProperty_eq_top 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.δ₂
SimplexCategory.Truncated.σ₂
naturalityProperty
Top.top
CategoryTheory.MorphismProperty
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
—SimplexCategory.Truncated.morphismProperty_eq_top
CategoryTheory.MorphismProperty.IsMultiplicative.unop
CategoryTheory.MorphismProperty.IsMultiplicative.naturalityProperty
Fintype.complete
CategoryTheory.types_ext
hδ'₀
hδ'₁
hδ'₂
hσ'₀
hσ'₁
spineEquiv_f₂_arrow_one 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.δ₂
SSet.Truncated.Path.arrow
DFunLike.coe
Equiv
CategoryTheory.Functor.obj
SSet.Truncated.Path
EquivLike.toFunLike
Equiv.instEquivLike
SSet.Truncated.StrictSegal.spineEquiv
f₂
—Equiv.apply_symm_apply
SimplexCategory.mkOfSucc_eq_id
CategoryTheory.FunctorToTypes.map_id_apply
Matrix.cons_val_fin_one
spineEquiv_f₂_arrow_zero 📖mathematicalCategoryTheory.Functor.map
Opposite
SimplexCategory.Truncated
CategoryTheory.Category.opposite
CategoryTheory.ObjectProperty.FullSubcategory.category
SimplexCategory
SimplexCategory.smallCategory
SimplexCategory.len
CategoryTheory.types
Opposite.op
CategoryTheory.ObjectProperty.FullSubcategory
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SimplexCategory.Truncated.δ₂
SSet.Truncated.Path.arrow
DFunLike.coe
Equiv
CategoryTheory.Functor.obj
SSet.Truncated.Path
EquivLike.toFunLike
Equiv.instEquivLike
SSet.Truncated.StrictSegal.spineEquiv
f₂
—Equiv.apply_symm_apply
SimplexCategory.mkOfSucc_eq_id
CategoryTheory.FunctorToTypes.map_id_apply

---

← Back to Index