Documentation Verification Report

NonDegenerateSimplices

📁 Source: Mathlib/AlgebraicTopology/SimplicialSet/NonDegenerateSimplices.lean

Statistics

MetricCount
DefinitionsN, cast, instPartialOrder, instPreorder, mk, toS, toN, orderEmbeddingN
8
Theoremscast_eq_self, dim_le_of_le, dim_lt_of_lt, eq_iff, ext_iff, iSup_subcomplex_eq_top, le_iff, le_iff_exists_mono, mk'_surjective, mk_dim, mk_simplex, mk_surjective, nonDegenerate, subcomplex_injective, subcomplex_injective_iff, existsUnique_n, subcomplex_toN, toN_eq_iff, orderEmbeddingN_apply
19
Total27

SSet

Definitions

NameCategoryTheorems
N 📖CompData
8 mathmath: iSup_subcomplexOfSimplex_prod_eq_top, orderEmbeddingN_apply, N.le_iff_exists_mono, Subcomplex.N.le_iff, N.le_iff, N.iSup_subcomplex_eq_top, Finite.finite, S.existsUnique_n
orderEmbeddingN 📖CompOp
1 mathmath: orderEmbeddingN_apply

Theorems

NameKindAssumesProvesValidatesDepends On
orderEmbeddingN_apply 📖mathematicalDFunLike.coe
RelEmbedding
N
Subcomplex
Preorder.toLE
N.instPreorder
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
RelEmbedding.instFunLike
orderEmbeddingN
S.subcomplex
N.toS

SSet.N

Definitions

NameCategoryTheorems
cast 📖CompOp
1 mathmath: cast_eq_self
instPartialOrder 📖CompOp
instPreorder 📖CompOp
4 mathmath: SSet.orderEmbeddingN_apply, le_iff_exists_mono, SSet.Subcomplex.N.le_iff, le_iff
mk 📖CompOp
toS 📖CompOp
32 mathmath: SSet.Subcomplex.PairingCore.isUniquelyCodimOneFace, SSet.Subcomplex.Pairing.IsProper.isUniquelyCodimOneFace, SSet.iSup_subcomplexOfSimplex_prod_eq_top, SSet.Subcomplex.PairingCore.isUniquelyCodimOneFace_index, SSet.Subcomplex.Pairing.dim_p, SSet.Subcomplex.Pairing.isUniquelyCodimOneFace, SSet.Subcomplex.PairingCore.surjective', dim_le_of_le, SSet.Subcomplex.PairingCore.isUniquelyCodimOneFace_index_coe, ext_iff, mk_dim, dim_lt_of_lt, SSet.Subcomplex.PairingCore.type₂_dim, SSet.orderEmbeddingN_apply, SSet.Subcomplex.PairingCore.type₂_simplex, le_iff_exists_mono, SSet.Subcomplex.PairingCore.IsProper.isUniquelyCodimOneFace, SSet.Subcomplex.Pairing.AncestralRel.dim_le, SSet.Subcomplex.PairingCore.type₁_dim, subcomplex_injective_iff, mk_simplex, le_iff, nonDegenerate, SSet.S.toN_eq_iff, eq_iff, SSet.Subcomplex.PairingCore.type₁_simplex, iSup_subcomplex_eq_top, SSet.S.subcomplex_toN, SSet.Subcomplex.N.mk_simplex, SSet.Subcomplex.N.mk_dim, SSet.Subcomplex.N.notMem, SSet.S.existsUnique_n

Theorems

NameKindAssumesProvesValidatesDepends On
cast_eq_self 📖mathematicalSSet.S.dim
toS
cast
dim_le_of_le 📖mathematicalSSet.N
Preorder.toLE
instPreorder
SSet.S.dim
toS
le_iff_exists_mono
SimplexCategory.len_le_of_mono
dim_lt_of_lt 📖mathematicalSSet.N
Preorder.toLT
instPreorder
SSet.S.dim
toS
LE.le.lt_or_eq
dim_le_of_le
LT.lt.le
le_iff_exists_mono
Subtype.prop
mk_surjective
CategoryTheory.FunctorToTypes.map_id_apply
SimplexCategory.eq_id_of_mono
eq_iff 📖mathematicalSSet.S.subcomplex
toS
ext_iff 📖mathematicaltoS
iSup_subcomplex_eq_top 📖mathematicaliSup
SSet.Subcomplex
SSet.N
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.instCompleteLatticeSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
SSet.S.subcomplex
toS
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
le_antisymm
SSet.Subcomplex.iSup_ofSimplex_nonDegenerate_eq_top
iSup_le_iff
le_trans
le_refl
le_iSup
le_iff 📖mathematicalSSet.N
Preorder.toLE
instPreorder
SSet.Subcomplex
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
SSet.S.subcomplex
toS
le_iff_exists_mono 📖mathematicalSSet.N
Preorder.toLE
instPreorder
CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
SSet.S.dim
toS
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SSet.S.simplex
SSet.mono_of_nonDegenerate
nonDegenerate
mk'_surjective 📖mathematicalmk'nonDegenerate
mk_dim 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
SSet.nonDegenerate
SSet.S.dim
toS
mk_simplex 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
SSet.nonDegenerate
SSet.S.simplex
toS
mk_surjective 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
Set
Set.instMembership
SSet.nonDegenerate
Subtype.prop
Subtype.prop
nonDegenerate
nonDegenerate 📖mathematicalCategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.types
Opposite.op
SSet.S.dim
toS
Set
Set.instMembership
SSet.nonDegenerate
SSet.S.simplex
subcomplex_injective 📖SSet.S.subcomplex
toS
le_antisymm
le_iff
le_refl
subcomplex_injective_iff 📖mathematicalSSet.S.subcomplex
toS
subcomplex_injective

SSet.S

Definitions

NameCategoryTheorems
toN 📖CompOp
2 mathmath: toN_eq_iff, subcomplex_toN

Theorems

NameKindAssumesProvesValidatesDepends On
existsUnique_n 📖mathematicalExistsUnique
SSet.N
SSet.Subcomplex
subcomplex
SSet.N.toS
existsUnique_of_exists_of_unique
mk_surjective
SSet.exists_nonDegenerate
Subtype.prop
le_antisymm
CategoryTheory.isSplitEpi_of_epi
SimplexCategory.instSplitEpiCategory
CategoryTheory.mono_iff_injective
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.instIsSplitMonoMap
CategoryTheory.instIsSplitMonoOppositeOpOfIsSplitEpi
CategoryTheory.FunctorToTypes.map_comp_apply
CategoryTheory.op_comp
CategoryTheory.Category.assoc
CategoryTheory.IsSplitEpi.id
CategoryTheory.Category.comp_id
SSet.N.subcomplex_injective
subcomplex_toN 📖mathematicalsubcomplex
SSet.N.toS
toN
ExistsUnique.exists
existsUnique_n
toN_eq_iff 📖mathematicaltoN
subcomplex
SSet.N.toS
subcomplex_toN
ExistsUnique.unique
existsUnique_n

---

← Back to Index